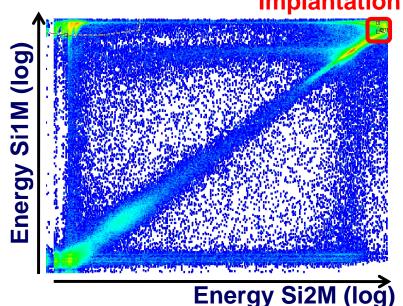
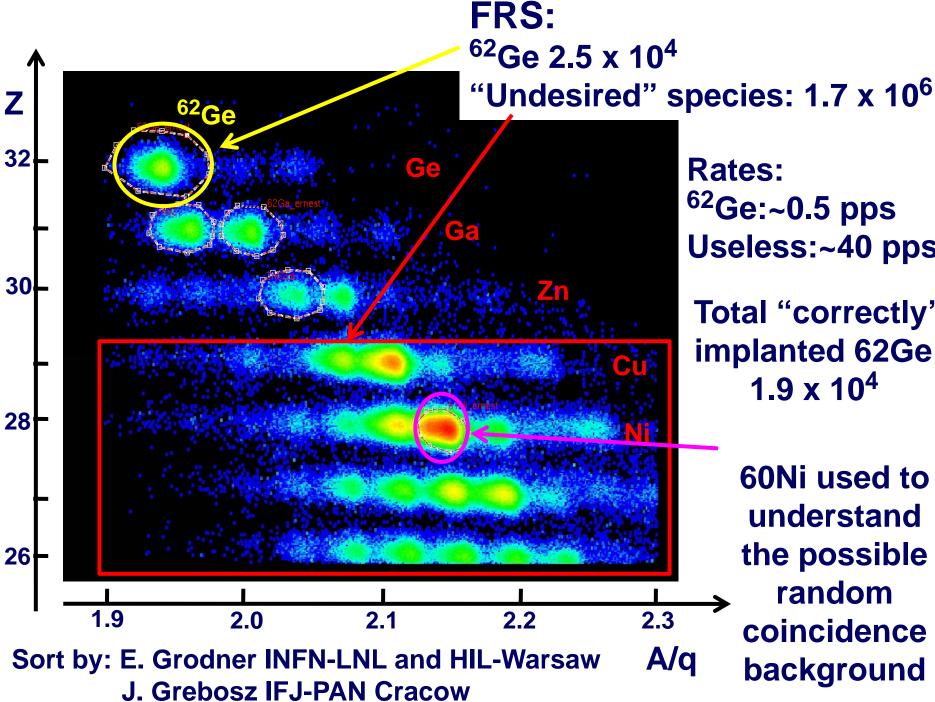

Exploring p-n pairing effects in the β -decay of T_z=-1 ⁶²Ge FRS-RISING Stopped Beam campaign

A.Gadea IFIC – CSIC Valencia, Spain and INFN-LNL Legnaro, Italy For the S326 RISING collaboration

Since long 62Ga is contemplated by nuclear structure theorist as a candidate for high spin phenomena related with T=0 pairing.

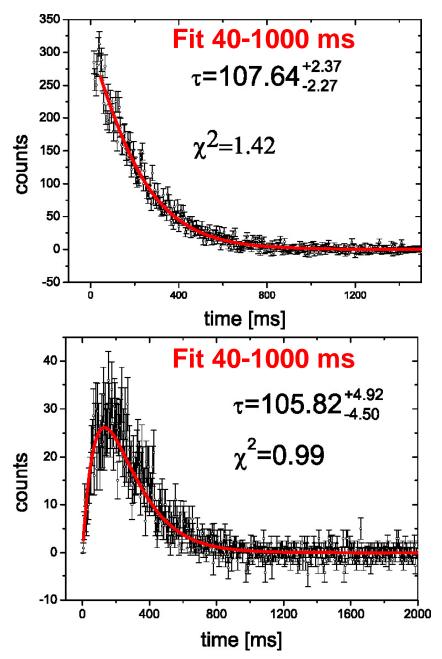
Through the 62Ge GT β -decay it is possible to explore also T=0 properties of low-lying 62Ga states.


Single fermion GT transitions in medium mass nuclei are highly retarded *logft* > 4 (break of SU(4) symmetry). If p-n pairing survives small *logft* (large B(GT)) values are expected


FRS-RISING S326 experiment ~16 shifts _20/07/2007

TOF

SC21 rate ~10⁶ counts/spill 78Kr limited to ~4x10⁹ / spill Implantation Trigger 80 Hz Implantation in S2M

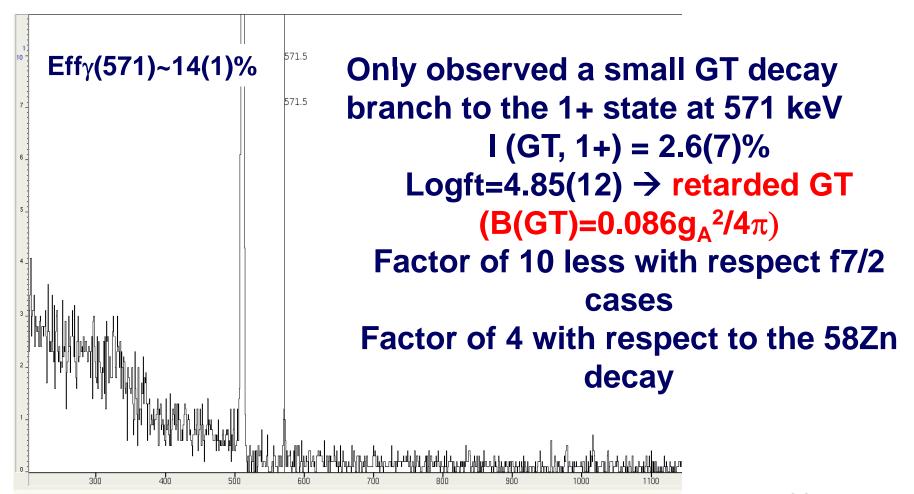

⁷⁸Kr ³⁴⁺ 750MeV/u
4.011g/cm2 Be + SEETRAM
6.5 g/cm2 Al S2 degrader
Extraction 9s
Implantation-decay
correlation efficiency ~40%

⁶²Ge:~0.5 pps Useless:~40 pps **Total "correctly"** implanted 62Ge: 1.9 x 10⁴

> 60Ni used to understand the possible random coincidence background

⁶²Ge (T_z=-1) Lifetime Measurements

Gate on 62 Ge FRS+implantation Selected any decay after implantation i.e. decay time of 62 Ge + decay time of 62 Ga following the decay of 62 Ge


T_{1/2} = 74.6 (16) ms (only statistical error)

Gate on 62 Ge FRS+implantation Selected two sequential decays after implantation i.e. decay time of 62 Ga following the decay of 62 Ge.

 62 Ga T_{$\frac{1}{2}$} = 116.121(21)ms from G.F.Grinyer et al., PRC77(08)015501

E. Grodner INFN-LNL and HIL-Warsaw

β-decay properties

Conclusion: No evidence of p-n T=0 condensate in ⁶²Ga but highly diminish population of the low lying T=0 J=1+ state in the daughter nucleus

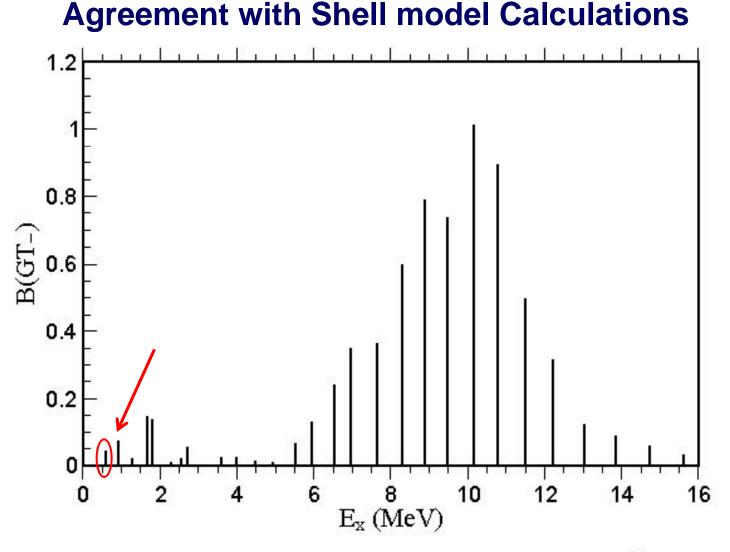
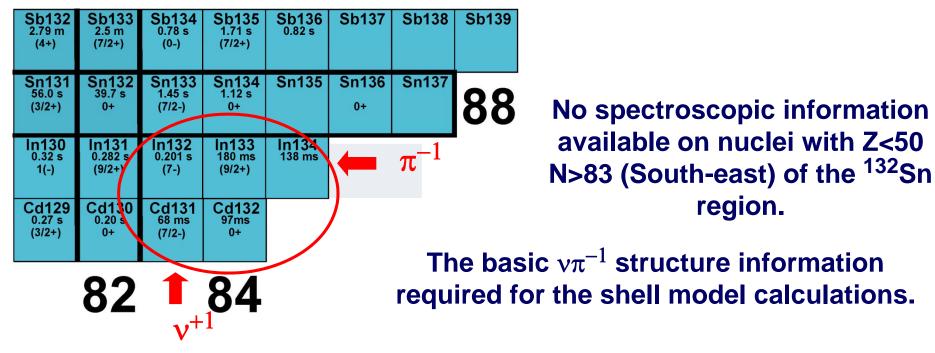



Fig. 7. Shell model GT_+ distribution for ${}^{62}Ge$.

I.Petermann, G.Martínez-Pinedo, K.Langanke, E.Caurier Eur.Phys.J.A34,319–324(2007)

- Title "Structure of ¹³²In populated in the β -decay of ¹³²Cd."
- Spokesperson: A.Gadea, IFIC-CSIC Valencia, Spain and INFN-LNL Legnaro, Italy
- GSI Contact Person: M.Górska, GSI-KPII
- Year of Approval:2007
- Shifts: 15 approved (main)
- •15 Shifts to be scheduled
- •No parasitic beam assigned \rightarrow to be scheduled together with other 238U fission run
- •Change of Rising Configuration to fast-beam mode on fall 2009

The Southeast of the ¹³²Sn Region

The most exotic species around ¹³²Sn: ¹³²In has a N/Z ratio ~1.69 to be compared with 1.68 for ¹³⁴Sn or 1.65 for ¹³⁵Sb (132 Cd N/Z~1.75).

The N=83 nuclei are the best candidates to observe the shell evolution at large isospin values, i.e. the evolution of the monopole interaction (tensor interaction between $\pi g_{9/2}$ and $\nu f_{7/2}$).

Opportunity

•Southeast of the ¹³²Sn: key region in the scientific program of the new generation radioactive beam facilities. The β -decay study of ¹³²Cd will contribute to make available fundamental information in the region.

•The GSI-FRS facility is the only one where is possible to get ¹³²Cd species identified even by event. Cadmium is difficult to extract from conventional ion sources.

• Rising has highest gamma efficiency in general, in particular for low energy gammas, for 500 keV it is ~15% and for 100 keV it's ~30% by far the highest efficiency one can get in the world in the near future.

•The Rising stopped setup with active stopper is prepared and running for the β -delayed gamma emission.

FRS-RISING Setup

- FRS focal planes equipment:
 - Standard FRS FP detectors MW/TPC & MUSIC Standard Scintillator TOF between S2 and S4 Rising Active Stopper setup
- The Rising setup is ready, new active stopper DSSSD, for replacement/completion of the setup already purchased
- •Standard equipment and DAQ required
- Primary ²³⁸U beam 3x10⁹ pps (1 sec spill) posible by mid
 2009
- 15 shifts requested for 2009

Experimental details

•The ¹³²Cd production: induced fission of a ²³⁸U beam at 750 MeV/u •Production target 1g/cm² Be •The extrapolated cross sections for ¹³⁰Cd ~1.8 10⁻⁶ barn and ¹³²Cd ~2.7 10⁻⁷ barn. Ratio (¹³²Cd/¹³⁰Cd) = 0.15 •The implantation rate of ¹³⁰Cd measured: 1 ion/min. •With a beam intensity (SIS fast ramping mode) ~3x10⁹ pps ¹³²Cd implantation rate of 0.3 ion/min = 400 ions/day •The β-delayed P_n ~ 60%: i.e. ~40% with γ -transitions in ¹³²In. •Rising array Efficiency > 15% at low energies, β -Efficiency ~40%. •The setup with the active stopper to identify the sequential T_{1/2}=97(10) ms and T_{1/2}=207(6) ms two β -decays in the detector pixels. •Beam time 5 days (15 shifts) for:

~200 counts in each peak of the spectrum and

~40 counts in the coincidence spectra

• β -delay spectroscopy of ¹³⁰Cd and ¹²⁸Cd will be also studied