Search for unknown proton-unbound nuclei by tracking their decay products with micro-strip detectors in-flight

Ivan Mukha for the S271 collaboration

• Discovery of a new isotope ¹⁹Mg by using a tracking technique with micro-strip detectors.

• Observation of two-proton radioactivity of ¹⁹Mg by measuring decay vertex and its fragment correlations.

- Three-body correlations in 2p decays of ¹⁶Ne and ¹⁹Mg.
- Spectroscopy of proton-unbound nuclei ¹⁵F, ¹⁶F, ¹⁸Na, ¹⁹Na.

• Prospective experiments on nuclei beyond the proton drip line with this technique: ³⁰Ar, ³⁴Ca, ⁶⁹Br.

Two-proton radioactivity landscape

Prospective studies of 2p-radioactivity

Short-lived nuclei: ⁶Be, ¹²O, ¹⁶Ne, ³⁴Ca

In-flight decay candidates: ¹⁹Mg, ³⁰Ar, ³⁴Ca ⁵⁸Ge, ⁶⁸Se, ⁶⁶Kr

⁴⁵Fe,⁴⁸Ni,⁵⁴Zn,⁵⁸Ge,⁶²Se,⁶⁶Kr,^{94m}Ag

L.V. Grigorenko, I.G. Mukha, M.V. Zhukov,
Proc. PROCON'03 (AIP 681, NY 2003) 126.
B.A. Brown and F.C. Barker, *ibid.*, p. 118.
L.V. Grigorenko and M.V. Zhukov, PRC 68 (200)

Idea of experiment

Distance from target to decay vertex

The S271 experiment at GSI, 2006.

<u>Collaboration:</u> GSI, Sevilla, Huelva, Edinburgh, Moscow, Warsaw, Dubna, Santiago de Compostela.

Close-up view

Identification of fragments

2000

200 400

600

One-neutron removal reaction ${}^{20}Mg \rightarrow {}^{19}Mg \rightarrow {}^{17}Ne+p+p$ Fragmentation ${}^{20}Mg \rightarrow {}^{17}Ne+p+p+n$

Channel

800 1000 1200 1400 1600

The micro-strip detectors used for tracking

Elements resolved by the AMS02 tracker, GSI data 2003

Dimensions 70x40 mm², 100 micron strip pitch, in total 1000 channels

CND

http://dpnc.unige.ch/ams/GSItracker/www/

Front-end electronics: VA64_hdr9 chips from IDE AS. Serial read-out, digitalization, pedestal and common-noise subtraction made by the GSI electronics and integration with the GSI DAQ. Santiago08

X,Y uncertainties of tracking

for heavy-ions $\sim 14 \,\mu m$, for protons $\sim 30 \,\mu m$

Vertex distributions of ¹⁸Ne+p+p events from the target. Radioactivity events are excluded.

How to identify a reaction channel ? Momentum correlations of fragments in 2p decays, a complete kinematics case

Angular correlations of fragments reflect the decay energy

Kinematical enhancement around a maximum angle Predicted p-¹⁷Ne correlations for ¹⁹Mg,

L.V.Grigorenko, I.G.Mukha, M.V.Zhukov, Nucl.Phys. A 713 (2003)

Calibration of angular p-HI correlations by using the known 2p-decay of ¹⁶Ne with $Q_{2p}=1.4(1)$ MeV

Angular p-(p-¹⁴O) correlations from ¹⁷Ne \rightarrow ¹⁶Ne \rightarrow ¹⁴O+p+p events

Measured Q_{2p}=1.35(8) MeV

States in ¹⁹Mg observed in ¹⁷Ne+p+p correlations

Sequential 2p-decay

via the ¹⁸Na g.s.

Santiago08

Comparison of the data with the theoretical predictions:

Theory predictions:

L.Grigorenko, I.Mukha, M.Zhukov, Nucl.Phys. A 713 (2003)

<u>Q2p=2000(250) keV</u>

Structure of ¹⁹Mg revealed in fragment correlations

- Strong Coulomb repulsion effects.
- Moderate sensitivity of the distributions to the ¹⁹Mg \succ structure
- Certain features of correlations are retained in the projected spectra

Proton-proton correlations from ¹⁹Mg and ¹⁶Ne 2p decays: No diproton emission!

I.Mukha et al., Phys.Rev. C 77, 061303(R) (2008)

 E_{p-p}

Three-body correlations from ¹⁹Mg and ¹⁶Ne 2p decays: No sign of diproton emission!

Three-body model exclusive predictions are fine!

- - - - - Isotropic 2p emission (phase space)

 E_{p-p}

States in ¹⁵F observed in ¹⁴O+p+p correlations

Powerful technique in studies of proton-unbound nuclei

- Very thick targets and low-quality beams are acceptable
 - Large registration efficiencies of multi-particle events
 - High precisions of the measured decay energy,
 - Total energy of protons not required
 - Nuclear-structure and decay-mechanism information

We propose:

- A search for the unknown ground states of ³⁰Ar and ³⁴Ca by using secondary beams of ³¹Ar and ³⁵Ca produced with the primary beams of ³⁶Ar and ⁴⁰Ca, respectively. The ³⁰Ar, ³⁴Ca nuclei are predicted to be unbound respective two-proton emissions. Their decay products will be measured in-flight by detecting the triple ²⁸P(³²Ar)+p+p coincidence. The ³⁰Ar, ³⁴Ca are prospective candidates for observation of "direct" two-proton radioactivity. Extensive studies made in the framework of a realistic three-body model predict their half-lives to be in the range 0.5–700 ps which overlaps reasonably with the decay-time range measurable at FRS. We intend to observe the direct two-proton emissions and to measure the half-lives of ³⁰Ar, ³⁴Ca, their decay energies as well as proton-proton correlations. The half-life values will be derived from the distribution of the decay vertices. The vertices will be extrapolated from the precisely measured (by means of silicon micro-strip detectors) trajectories of all fragments.
- We suggest a search for the unknown isotope ⁶⁹Br and spectroscopy of its excitation spectrum. Properties of the ⁶⁹Br ground state are important for the nuclear astrophysics studying synthesis of elements during X-ray bursts in rapid proton capture reactions (i.e., *rp*-process), namely on the waiting-point *N=Z* nucleus ⁷⁰Kr (see, e.g., [5]. We intend to observe the ⁶⁹Br states in two-proton decays of excited states of ⁷⁰Kr produced in a secondary one-neutron knock-out reaction of a radioactive beam of ⁷¹Kr ions which can be made in primary fragmentation reactions of a primary beam of ⁷⁸Kr. Such a way of population is in analogy with the successful observation of the ¹⁵F spectrum by using the chain of reactions ²⁴Mg→¹⁷Ne→¹⁶Ne*→¹⁵F+p→¹⁴O+2p [2, 4]. The ⁶⁹Br decay products will be measured in-flight by detecting the triple ⁶⁸Se+p+p coincidence following sequential 2p-decays of ⁷⁰Kr.

The estimated beam time is about 10 days divided in two runs. For the first run, the evaluated time is 16 shifts of 1000 MeV/u of 40 Ca beam with an intensity 10^{10} ions per spill. For the second run, the request is 16 shifts of 1000 MeV/u of 78 Kr beam with an intensity 10^{10} ions per spill.

> Lifetimes: ⁶⁴Ge
$$T_{1/2} = 63.7$$
 s, ⁶⁸Se $T_{1/2} = 35.5$ s, ⁷²Kr $T_{1/2} = 17.2$ s, ⁷⁶Sr $T_{1/2} = 8.9$ s

Lifetimes of the nearby drip line nuclei are typically tens of milliseconds

To calculate astrophysical capture rates leading to nuclei in the "ridges" at high temperatures we must know at least the 2p and gamma widths of the excited states

For temperatures below 0.1-1 GK the non-resonant interactions may become important

Thank you, co-authors !

K. Sümmerer, L. Acosta, M.A.G. Alvarez; E. Casarejos; A. Chatillon;
D. Cortina Gil; J. Espino; A. Fomichev; J.E. Garcia-Ramos; H. Geissel;
J. Gomez-Camacho; L. Grigorenko; J. Hoffmann, O. Kiselev;
A. Korsheninnikov; N. Kurz; Yu. Litvinov; I. Martel; C. Nociforo; W. Ott;
M. Pfützner; C. Rodriguez; E. Roeckl; M. Stanoiu; H. Weick; P. Woods

University of Sevilla, Spain; Kurchatov Institute, Moscow, Russia; GSI, Darmstadt, Germany; University of Huelva, Spain; University of Santiago de Compostela, Spain; JINR, Dubna, Russia; University of Mainz, Germany; University of Warsaw, Poland; University of Edinburgh, UK

Thanks for the help in preparations and test experiments A. Tarasov (MSU), A. Kelic (GSI), R. Raabe (KU Leuven), A. Kiseleva (GSI), We thank A. Bruhle, K.H. Behr, W. Huller for the fine mechanics work.