Report from S341 Experiment

Helmut Weick, FRS user meeting 13th Nov 2008

Measure neutron removal cross section for proton rich carbon nuclei

Participants:

Joachim Enders, Dolores Cortina-Gil, Fabio Farinon, Hans Geissel, Naohito Iwasa, Rudolf Janík, Peter Maierbeck, Chiara Nociforo, Andrej Prochazka, Carme Rodriguez, Haik Simon, Branislav Sitar, Peter Strmeň, Klaus Sümmerer, Vasiliy Volkov, Helmut Weick, John Winfield

TU Darmstadt, GSI, Univ. Santiago de Compostela, TU München, Univ. Bratislava, Univ. Tohoku

Spectroscopic Factors

Experimental spectroscopic factors

- smaller than predicted within the shell model
- short-range repulsion in deeplybound states?
- dependence on binding energy?

• Knockout n from ¹⁰C / ¹¹C

 learn about evolution of spectroscopic factors in the deeply-bound 0p_{3/2} neutron shell

> Occupation Probability

Results

- Separation, identification and transmission worked as intended.
- Rates of secondary beams were anyway sufficient and breakup cross sections were high. We got good statistics in short time. Vasiliy Volkov analyzes the data (^{10,11}C -> ⁹C).

Reaction ¹⁰C -> ⁹C on Be target at S2

Identification plot at S3:

Results

 In the spare time we extended the program to: ⁹C -> ⁸B, breakup ¹⁰C -> ¹¹N, p-pickup (not observed) ¹²C -> ¹²N, ¹²C -> ¹²B, ¹¹C -> ¹¹B, charge exchange

Measure Momentum Distributions

track back to the image plane

Make "achromatic" system by tracking

Equation to determine momentum deviation from breakup at S2: x = measured positions, D = dispersion, M = magnification, κ for degrader

by the term in brackets the momentum from the production target is subtracted.

S293

Investigating fissioning systems with high barriers

¹⁸¹Ta (300, 500 and 1000 A MeV) + p

CEA-DAPNIA Saclay, France Universidad de Santiago de Compostela, Spain GSI Darmstadt, Germany

slides from José Benlliure

FRS user's meeting November'08

Motivation

Discrepancies in fission cross sections at low fissilities

- Fissioning systems with high barriers are expected to be more sensitive to dissipative effects
- Ta or W are considered as appropiate materials for the spallation blanket in neutron sources

Experimental technique

- Inverse kinematics allows full angular coverage and accurate cross section determination for fission

FRS user's meeting November'08

Fission in ¹⁸¹Ta (100, 200 and 500 A MeV) + H_2

Fission in ¹⁸¹Ta (100, 200 and 500 A MeV) + H_2

FRS user's meeting November'08

Present status

- Experiment run late June 2008
- Despite the problems with the TWIN-MUSIC, fission cross sections could be measured using the energy-loss signals from the trigger plastic scintillators
- Data analysis is in progress but preliminary cross sections are available
- The possible characterization of the charge distribution of the fission residues from the measured data will be investigated