Commissioning of the LEB Stopping Cell at the FRS Ion-Catcher

Wolfgang Plaß

GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany

II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Germany

Overview

Motivation

Results from a first generation stopping cell at the FRS (S258)

Development of a second generation, cryogenic stopping cell

Plans for an on-line test at the FRS Ion Catcher

Conclusions

Motivation: Low Energy Branch at FAIR

Low Energy Brach of the Super-FRS at FAIR

High-precision experiments with in-flight separated exotic nuclei almost at rest, (production by projectile fragmentation / fission)

- universal and fast production
- high selectivity
- cooled exotic nuclei

MATS

(Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly charged ions)

- High accuracy mass measurements
- In-trap conversion electron and alpha spectroscopy
- Trap assisted spectroscopy

LaSpec (Laser Spectroscopy)

- Collinear laser spectroscopy of ions and atoms
- β-NMR
- Resonance ionization spectroscopy

MATS - LaSpec TDR submitted in September 2009

Motivation: Stopping Cell

First Generation Stopping Cell (S258)

Linear Stopping Cell

• Overall length: 1.4 m

• Pressure: 100 mbar helium

RF fields (120 V_{pp} @ 900 kHz)
DC fields (~7 V/cm) for extraction

G. Savard et al., NIM B 204 (2003) 582

On-line Test of the FRS Ion-Catcher (S258)

Results of on-line test in 2005:

- Successful demonstration of range-bunching, stopping, and extraction from a gas cell of relativistic exotic nuclei
- Extraction efficiency: ~ 45%
- Extraction times: ~ 20 ... 50 ms

Issues:

- Molecule formation (contaminants)
- Stopping efficiency ~ 5% (limited by pressure of 100 mbar)

M. Petrick et al., NIMB 266 (2008) 4493

Cryogenic Stopping Cell: Conceptual Design

New concept: Operate He-filled stopping cell at cryogenic temperature (~70 K)

Advantages

- P. Dendooven et al., NIM A 558 (2006) 580
- S. Purushothaman et al., NIM B 266 (2008) 4488
- Ultra-pure helium (freezing-out of contaminants)
 - Reduced ion losses
 - No formation of molecules/adducts
- Reduced radial ion diffusion
- 2+ charge state (?) → shorter extraction times
- Reduced requirements for cleanliness → easier, more flexible construction
- Operational reliability

Transport efficiency of α -decay recoil ions in a closed gas cell

Cryogenic Stopping Cell: Conceptual Design

Challenges:

Fast ion extraction at high buffer gas density

→ high axial electric DC field

Efficient ion extraction at high buffer gas density

→ high repelling electric RF field (RF carpet)

M. Wada, NIMB 204 (2003) 570

Cryogenic Stopping Cell: RF Carpet

P. Dendooven, M. Ranjan et al.

Thickness: 0.8 mm Diameter: 250 mm

Number of rings 500

Electrode spacing: 0.25 mm

Exit hole: 0.6 mm

Cryogenic Stopping Cell: Vacuum chambers

Cooling pipe lines

Cooling spiral

Place for heating wire

Handle

P. Dendooven, M. Ranjan et al.

Cryogenic Stopping Cell: Expected Performance

Efficiency

Stopping 10...100% Stopped as ion 30...50% Transport 100% Total 5...50%

Extraction Time

10...100 ms

Off-line / On-line Test at the FRS Ion-Catcher

Time schedule

- Development in 2008/2009
- Construction in 2009
- Off-line / on-line test at GSI in 2010/2011

Performance characterization

- Test cryogenic operation
- Demonstrate stopping and extraction
- Investigate cleanliness / contamination
- Measure extraction efficiency and extraction times
- Determine intensity limitations

Off-line

- ²²³Ra recoil ion source
- Fission source

On-line

- Stable beam
- Projectile fragments

Issue: Space at F4

Multiple-Reflection Time-of-Flight Mass Spectrometer

Mass resolving power

- $m/\Delta m > 300,000 \text{ (FWHM)}$
- $m/\Delta m > 50,000$ (1%)
- $m/\Delta m > 20,000 (0.1\%)$

Mass accuracy

• 0.1...1 ppm

Transmission efficiency

• up to $(70 \pm 30)\%$

Repetition frequency

20...100 Hz

Ion capacity

• up to 10^4 ions/cycle $\rightarrow 10^6$ ions/s

Isobar separation

• demonstrated for C_6H_6 and $^{13}C^{12}C_5H_5$ (Intensity ratio 200:1, $\Delta m = 4$ mu)

Fast, high-resolution, broadbad, efficient, detects stable and radioactive ions

→Ideal tool for the commissioning of the FRS Ion-Catcher

W.R. Plaß et al., Nucl. Instrum. Methods B 266 (2008) 4560

Conclusions and Outlook

Stopping cell for the Low Energy Branch of the Super-FRS

Key device for operation of MATS and LaSpec

First generation stopping cell (S258)

- Successful on-line test; proof-of-principle for stopping and extraction of relativistic projectile fragments
- High extraction efficiency
- Issues: Low pressure (stopping), molecule formation

Cryogenic stopping cell

- Goal: overcome problems of first generation device
- Cryogenic operation: many advantages
- Challenges: achieve high electric fields
- Design has been completed; contruction is underway
- First test in 2010

LEB Stopping Cell Collaboration

- J. Äysto⁴, P. Dendooven¹, H.Geissel^{2,3}, I. Moore⁴, H. Penttilä⁴, W.R. Plaß^{2,3}, A. Popov^{4,6},
- S. Purushothaman³, M. Ranjan¹, A. Saastamoinen⁴,
- D. Schäfer², C. Scheidenberger^{2,3}, P. Thirolf⁵, H. Weick³
- ¹ KVI, University of Groningen, (Netherlands)
- ² Justus-Liebig-Universität Gießen (Germany)
- ³ GSI, Darmstadt, (Germany)
- ⁴ University of Jyväskylä, (Finland)
- ⁵ Ludwig-Maximilians-Universität, Munich, (Germany)
- ⁶ Petersburg Nuclear Physics Institute, (Russia)