Development of FRS electronic, DAQ and detectors # Report on the FRS000 experiment of 2009 Stephane Pietri s.pietri@gsi.de | | Block 2 / 2009 | | | | | | | | | | March 2009 | | | | | | | | | | Schedule as of 06-Mrz-2009 | | | | | | | | | |---|----------------|-------|---------|--------|---------------|---------|-------|----------------|---------|------------|--------------------------------|-----------|--------|---------|---|---------------------------|-------------|---------|--------|-----------------------------|---|----------------------|--|----------------------------|----|--|-----------------------------------|---------|--| | W | | | W | eek | 10 | | | | | W | Veek 11 Week 12 | | | | | | | | | | | We | Veek 13 | | | | Week | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 4 15 | 16 | 17 1 | 1 | 9 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | | | | Jur | ngcla | | ollers | U236
heim, | ECR, | | 24Sn | 3.8 | | | U225, | Heßbe | rger, s | 64 Cr (EC
Hz, | R), 4
5 ms, | | MeV/ | ı, 100 | 10 pn/ | A 50 | | | | | n, Au,
pulse: | | | | | | | | | | | | | | | Sch
Ru, | SIO,
nolz,
11.4
/, X6 | B/UI | MT, co | mmis | sioning I | л-Bra | nch, R | tu, Cr, | хо | Sci
Cr, | BIO,
holz,
11.4
V, X6 | 338, I | Herrm | iann/L | eifels. | , 96F | tu (Pi | G), 1.0 | 69 AC | SeV (4 | 12+), 5el | /spill | lona e | xtraction | 10s. | нтв | _ | | | | , 5e9 j | p/spi | II, PIG | | , 197 <i>A</i>
coole
RS, E | r, ES | | | | | EO | 62, H | eil/Lit | | | | | 0 Me\
on, E | | 5e6/s | | | er, fa | , 2 | 6000, No
100-500 f
/spill (SI
raction (
S4 (F | leV/u
3), si
3-5 s) | , 5e6
ow | | | Trai
nn,
2
Me
m | IAT,
utma
, Au,
00
V/u,
ax., | Tau
A
M
4ES | S367
Ischwau, 20
leV/u,
9/bur
fast
ractio | vitz,
00
, >
nch, | 30 | S304/
ucret/
197Au
MeV/u
000/s ₁
tractic | Simo
, 100
, PIG
pill, 1 | n,
0 | | | | Block 3 / 2009 | | | | | | | | | | August 2009 | | | | | | | | | Schedule as of 13-Aug-2009 | | | | | | | | | | | | |----------------------------------|---|---|---|------------|---|-------------|------------------------------------|---|----|---|-----------------|--------|--|----|--------------|--|----|----|-----|----------------------------|----|----|------|---------------------|---|---|------------------------------------|---|------|--|--| | We | Week | | Week 32 | | | | | | | | Week 33 | | | | | ĵ. | | W | eek | 34 | 4 | | | | W | eek | ek 35 | | | | | | 1 2 | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 3 | | | | 8ar
40/
MUC
11.4I
/u | B, W.
Barth,
40Ar
MUCIS,
11.4MeV
/u,
UNILAC | | U000, machine experiments | | | | UBIO, Scholz
C, 11.4 MeV,
X6 | | | UMAT, Voss/Voss,
12C, 4.8MeV/u, 50
Hz, long pulses, X0 | | | UBIO, Scholz,
56Fe , 11.4
MeV, 5 Hz, 1
ms, X6 | | 1.4
lz, 1 | 4 | | | | | | | b) | 48
mic | akush
BCa (E
MeV/u
roAm
>=5 m | U243,
ev/Düll
CR), ~
i, 4 par
p (puls
s / 50 H | 1.5-5.5
icle-
e) in XI | | | | | | | UNILAC | | | etli
11 | B,
orck/l
ich, 4
l.4, 1n
z, 1ms | OAr,
nA, | | | | UMAT,
Severin/Trautmann
, C, 11.4 MeV/u,
Intensität nach
Absprache mit K.
Voss, M-branch | | | t i | | | | | | | | | | | | , | | U238
480
MeV
pulse
5 H | Block
a, 4-5
u, long
s: 5ms
z, Y7 | | | | | U.Sc
ler, 1 | B,
U.Schee
ler, 12C,
SIS | | SBIO, Scharr
MUCIS, SIS SBIO, Scharr
80-400 Me
therapy cond | | | | | | | /u, 1e | 3 - 1e
(Cave | 9/spil | | d) | | S319,
Saito/Saito,
6Li, ECR,
2000 MeV/u,
1,2e8/spill,
HTC | | | 13 | | | | | | | S, 3.5 GeV,
(max), HTB | | 5-10 | e) | | | | | | | | MeV/ | anun
nucle
RS | | | | | | | | | | Block4 / 2009 | | | | | | | | | | | September 2009 | | | | | | | | | | Schedule as of 11-Sep-2009 | | | | | | | | | | | | | |-----|---------------|-----|--------------|-----|-----|-------|-----|-----------------------|------|--------|-------|-----------------------|--------|--|------|---------------------------|--------|---------|---------|----------------------------|------------------|----------------------------|---------------|-------|----------------|---|--------------------|--|----|----|-------------------------|----------|----|--| | | | ٧ | ۷e | ek | 36 | 3 | | | | | | We | eek | 37 | | | | Week 38 | | | | | | | | W | eek | 39 | | | W | Week 4 | | | | 1 | 2 | 2 | 3 | Τ | 4 | 5 | T | 6 | 7 | | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | | | | | | | U | 243 | Y | akus | hev | /Di | üllma | nn, 4 | BCa (E | ECR) | ~4.5 | -5.5 N | leV/u, | 4 pa | rticle- | micro | Amp | (puls | e) in 2 | (8, > | =5 ms | / 50 H | 1z, X8 | TAS | CA | | | | a) | | | U23 | | pul | ck, 4
ses | 5n | ns, | 5 H | | | 1 | | IG/M | eeler,
EVVA
LAC | | | | | | | MeV/ | ger/He
u, 100
ms, Y | 0 pnA | | | cha | Blaze
rge s | i, M. R
viv, C:
tate, Z
pµA, 1 | a, me:
6 stri | an
pper | | | t |) | | | | | | | | Τ | | | T | | | \Box | | | | | | | | | | | | | | | Ĺ | Ť | | | | | | | | | | | | | | l0e | 7/s | | lor | , ML
ig e | | | | | | S351, Yamazaki/Bräuning,
U89+, MEVVA, 190 MeV/u,
1e4/s, SIS cooler, long flat
extraction, HTA S38173+, MEVVA,
750 MeV/u, 5e9
particles per spill,
4 s extraction, FRS. | | | | | | | | VA,
e9
oill, , | Gadea/Gorska, | | | | | 350, Benzoni/Gorsk
238U, MEVVA, 1000
eV/u, 5x10^9 /SPIL
FRS, S4 | | | 00 | c) | | | | d | 1) | | e) | • | | , 2.5 | G | warz
eV, '
tion | 1e5, | 10 | arz, | | | | n | | | | KIMUI | rents
M (>2e
oler, F | ov, U'
9), pr | 73+, 2 | 00-50 | | | nmon
400M
5e5/s
dracti | /leV/u
pill, lo | ng | | g) | | , | h) | | | | | | | | | | | | | | | U.Sc
er,
ES | | | | Grise
, 50-4
articl | | | | | E093,
10,200 | | | | rmal E | | | | | | huhar
pill (S
ESR | | | | | Block 4 / 2009 | | | | | | | | | | | | | C | | Schedule as | | | | | | | | | | | | | |----------------|---|------------------|-------------------------------------|---|-------|-------------------------|-------|-------|----|---------|----|-----|-------------------------------------|----------------------------------|-------------|--------------------------|-------|--------|-------|-------|---------|----|----|----|----|--|--| | ١ | Week 40 Week 41 | | | | | | | | | Week 42 | | | | | | | | | | | Week 43 | | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | | | ā | a) | | IMAT,
leV/u, | | | | | | | | b) | mac | U000,
machine
experim
ents | | | | | | | | | | | | | | | | | | Sch
U2
5,9 | BIO,
nolz,
238,
MeV,
(6 | | 5,9 M | Sever
eV/u,
pulse | 50 Hz | , lon | c) | S210 Saito/Saito El i ECP 2000 MoV/u | | | | | | | | | | | | Spi
23
ME | 00,
Iler,
8U
/VA,
IS | 70 | 2, J. I
0-100
slow | 0 Me\ | //u, 1 | e10/s | pill, | C | 1) | | | | | | | e) | FRS000,
Nociforo/Gorska, U,
PIG, 300-500 MeV,
14-(/spill -1-48/spill , slow
extraction, FRS | | | | | | | | | V, 3 | | | | | | | | | | | | | | | | | | | f) | ## **Chiara Nociforo is organizing them:** Aim: used by the core team to improve/test FRS/super FRS EDAQ and detectors, could be used (sometimes) for Nustar projects (should not be the normal place for commissioning Nustar detectors) ## **Running mode:** Only parasitic beam time (sharing either block or continuous) Few days every time (means few hours beam on target) → hard to do difficult FRS settings Most of the time before/after other FRS beam time (after good → use settings) - →A lot of effort every time (organization/preparation) for few hours of beam on target - → Requires proper coordination (lot of tests in parallel) - → Presently discussion: try only full beam time, only one test at the time?? #### **March 2009** - 1. TPC in vacuum - 2. Isomer TAGger - 3. TUM-Music high rate test - 4. Twin music test (for S304-land) - 5. Multi hit TDC instead of TACs - 6. RPC test for R3B ## August 2009 - 1. TPC calibration for S272 - 2. Diamond test for S1 - 3. Fission@ELISE tof test (people from BIII/Bruyere le Chatel) Just before S272, beam only at S2 #### October 2009 - 1. Multi event DAQ - 2. (Ge test for DESPEC) - 3. Time test for LYCCA plastic - 4. Diamond "pre-test" for PRESPEC - 5. Prepare S392 After RISING beam time and before s392, could use RISING settings. 3 days for point 2 non part of FRS000, point 3 tested in // of point 2 TPC in vacuum with TUM high rate test → TPC efficiency ~80% at 10⁵ ## **ITAG @ FRS** ### **Isomeric TAGging system @ FRS** consists of: - 2 movable HPGe detectors mechanically cooled; - 2 scintillators for particles counting and veto; - exchangeable passive stopper. The whole system is foreseen to lift up from the beam line. ### First test - March '09: Beam: ⁹⁶Ru⁴²⁺ at 500 MeV/u 5 x 10⁴ /spill Results (~ 68 min data): Gamma lines: 94Ru, 92Tc, 90Mo ## ⁹⁰Mo analysis: - 1) Select the expected isomer; - 2) Include some conditions to clean the gamma spectrum; - 3) Look for γ -lines and eventually for the half-life of the isomeric state. | | Literature | ITAG | |-----------------------|------------|--------------| | T _{1/2} (μs) | 1.12 | 1.13 ± 0.16 | | γ (keV) | 809.57 | 809.9 ± 4.0 | | γ (keV) | 947.97 | 947.8 ± 3.9 | | γ (keV) | 1054.10 | 1053.9 ± 3.9 | - → Development, test and pictures from Fabio Farinon - → Mechanical cooled Germaniums from Ivan Koujouharov #### **March 2009** - 1. TPC in vacuum - 2. Isomer TAGger - 3. TUM-Music high rate test - 4. Twin music test (for S304-land) - 5. Multi hit TDC instead of TACs - 6. RPC test for R3B ## August 2009 - 1. TPC calibration for S272 - 2. Diamond test for S1 - 3. Fission@ELISE tof test (people from BIII/Bruyere le Chatel) #### October 2009 - 1. Multi event DAQ - 2. (Ge test for DESPEC) - 3. Time test for LYCCA plastic - 4. Diamond "pre-test" for PRESPEC - 5. Prepare S392 # Music faster read-out/pille up problem # At high rate: pille up in the music shaper output gives wrong Z identification For comparison: TEGIC chambers at RIKEN 40% pilleup at 200 kHz - Solutions: 1. Identify the pileup events in the front end. - 2. Disentangle piled up events to get their energy (not for 2010?) # Music faster read-out / pile up problem March 2009: comparison SIS3302 module with normal firmware and the normal CAEN peak-sensing ADC #### 100 kHz 96Ru beam **CAEN ADC** SIS3302 processing with pile-up flag rejection in the analysis → Development, test and pictures from Henning Schaffner #### **March 2009** - 1. TPC in vacuum - 2. Isomer TAGger - 3. TUM-Music high rate test - 4. Twin music test (for S304-land) - 5. Multi hit TDC instead of TACs - 6. RPC test for R3B ## August 2009 - 1. TPC calibration for S272 - 2. Diamond test for S1 - 3. Fission@ELISE tof test (people from BIII/Bruyere le Chatel) #### October 2009 - 1. Multi event DAQ - 2. (Ge test for DESPEC) - 3. Time test for LYCCA plastic - 4. Diamond "pre-test" for PRESPEC - 5. Prepare S392 ## Caen v1290 multi hit TDC instead of TAC? #### **V1290 CAEN TDC:** - •21 bit, 25ps step (up to 51 us range) - •32 channels multi-hit For ToF and position of plastic we use TACs: This is a different setting, tof vs ΔE #### **March 2009** - 1. TPC in vacuum - 2. Isomer TAGger - 3. TUM-Music high rate test - 4. Twin music test (for S304-land) - 5. Multi hit TDC instead of TACs - 6. RPC test for R3B ## August 2009 - 1. TPC calibration for S272 - 2. Diamond test for S1 - 3. Fission@ELISE tof test (people from BIII/Bruyere le Chatel) #### October 2009 - 1. Multi event DAQ - 2. (Ge test for DESPEC) - 3. Time test for LYCCA plastic - 4. Diamond "pre-test" for PRESPEC - 5. Prepare S392 ## Multi event DAQ Normal cycle for 32 events : (conversion of the digitiser + read out) x 32 Use the multi event buffer of CAEN digitisers (ADC, TDC, QDC) (convertion x 32) + 1 big readout Optimal → readout outside of spill, 32 events too small memory October 2009: a crate allowing full FRS ID (tac signals+ADC music+TPC timing) running in multi-event mode (in // of the normal FRS DAQ) - At high rate not dead time saturated while normal DAQ was (roughly a x2 faster) - Scalers still not implemented - → Development and test from Chiara Nociforo