Neutron-deficient sd-shell nuclei and mirror symmetry at the proton drip line

First fast-beam PRESPEC proposals

Motivation

structure of exotic sd-shell nuclei

• Mirror symmetry at the proton drip line results of 36Ca experiments, sd-shell modification, T=-3/2

• Proposed experiment: ²⁵Si, ²⁹S and ³³Ar PRESPEC-Array, LYCCA ToF- Δ E-E-Telescope

• Coulomb excitation of ¹⁰⁴Sn Proposal by M. Gorska, J. Cederkall

• Mixed-symmetry states and Coulex of ⁸⁸Kr Proposal by J. Jolie, N. Marginean

FRS users meeting, GSI, October 29, 2009

GSI Experimental Proposal S377 – a PRESPEC Proposal

Neutron-deficient sd-shell nuclei and mirror symmetry at the proton drip line

P. Reiter, A. Wendt, A. Blazhev, B. Bruyneel, A. Dewald, K. Geibel, J. Jolie, M. Seidlitz, B. Siebeck, N. Warr Institut für Kernphysik, Universität zu Köln, D–50937 Köln, Germany H. Grawe, J. Gerl, M. Gorska, I. Kojouharov, N. Kurz, S.Pietri, H. Schaffner, H.J. Wollersheim Gesellschaft für Schwerionenforschung mbH, D-64291 Darmstadt, Germany M.A.Bentley, R.Wadsworth, T. Brock, I. Paterson, B.S. Nara Singh, L. Scruton, S.P. Fox, M.J.Taylor Department of Physics, University of York, Heslington, York YO10 5DD, U.K. C. Fahlander, P.Golubev, R.Hoischen, D.Rudolph Department of Physics, Lund University, S-22100 Lund, Sweden N. Pietralla, J. Leske, O. Möller Institut für Kernphysik, Technische Universität Darmstadt, D–69289 Darmstadt, Germany N. V. Zamfir National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest-Magurele, Romania S.M.Lenzi, F. Recchia Dipartimento di Fisica dell'Universita and INFN, Sezione di Padova, I-35131 Padova, Italy D.R. Napoli INFN, Laboratori Nazionali di Legnaro, Italy A. Algora, A.Gadea Instituto de Fisica Corpuscular. Universitat de Valencia. E- 46071 Valencia. Spain

and the PRESPEC Collaboration

Spokesperson: P. Reiter

PhD thesis project: A. Wendt

Deviations from classical shell model in sd-shell

New Shell Structure at N<Z - the mirror point of view -

N/Z

Shell model calculations:

- 2s1d shell; ¹⁶O core; USD B.A.Brown, B.H.Wildenthal, Ann.Rev.Nucl.Sci. 38,29 (1988)
- \bullet USD* : USD with experimental single particle energies (SPE) from ^{17}O and ^{17}F
- USD^m: monopole modification

Shell model calculation for T=1,2 nuclei in *sd*-shell

*H. Herndl et al., Phys. Rev. C 52 (1995) 1078 P. Doornenbal et al., Phys. Lett. B647, 237 (2007).

Empirical shell gap (G) reduction : $\Delta = G(N=8,Z=14) - G(Z=8,N=14) = -0.32 \text{ MeV}$ $\Delta = G(Z=20,N=14) - G(Z=14,N=20) = -0.74 \text{ MeV}$ => reduced neutronen gap in ³⁴Ca ($\Delta_v = 5.498 \text{ MeV}$) with respect to protonen gap in ³⁴Si ($\Delta_{\pi} = 6.241 \text{ MeV}$)

Shell model calculation for T=1,2 nuclei in *sd*-shell

A. Gade et al. Phys. Rev. C 76, 024317 (2007)

 Confirmation of modifications by recent result on last and missing 2⁺ MED in sd-shell for
 ²⁰Mg and ²⁰O pair.

Motivation for future work:

It is remarkable that the USD^{*m*} interaction presented in Ref. [9] that does not include the additional reduction of the Z = 14 proton subshell gap, predicts the mirror energy difference for ²⁰Mg and ²⁰O to be small and positive. This indicates predictive power of the modified interaction and underlines the sensitivity of MEDs to details of the nuclear shell structure.

From: Phys. Rev. C 76, 024317 (2007)

Experimental and shell model status MED T=1,2,1/2,3/2 nuclei in *sd*-shell

0

Experimental MED values for T=1/2, 3/2

full dots: firm spin-parity assign.,
open circles: spin-parity from systematic.
○
odd-proton state of T_z = -1/2, -3/2 partner

Herndl, Brown T=3/2 panel H. Herndl et al., Phys. Rev. C 52 (1995) 1078

T=1, 2 *MED* values *P. Doornenbal et al., Phys. Lett.* B647, 237 (2007).

New PRESPEC proposal

in-beam-γ-spectroscopy of neutron-deficient, sd-nuclei: ²⁵Si, ²⁹S, ³³Ar

PRESPEC fast beam set-up

LYCCA Secondary beam particle identification

vaccum chamber

In beam test @ IKP

detector unit

detector support

pre-amps

Double fragmentation technique

Secondary beam production rates based on LISE++ calculations.

³⁶Ar primary SIS beam of $2*10^{+10}$ pps

Nuclei	primary	2nd	Prim.	S 1	S2	all	S 2	all frags	2nd	2nd	Unreacted	2-frag-	Energy
of	beam /	beam	target	Deg	Deg	frags	2nd	@	beam @	beam	2nd beam	prod. @	@
interest	energy		g/cm ²	g/cm ²	g/cm ²	(kHz)	beam	MUSIC	MUSIC	on	@	LYCCA	DSSD
	(MeV/u)						(kHz)	(kHz)	(kHz)	target		(pps)	(MeV/u)
										(kHz)	(KHZ)		
³³ Ar	³⁶ Ar	³⁴ Ar	1,0	4,0	1,9	350	350	60	60	57	40	51	311
	580												
²⁹ S	³⁶ Ar	³⁰ S	3,5	3,8	1,9	350	344	60	60	57	39	51	252
	580												
²⁵ Si	³⁶ Ar 580	²⁶ Si	3,0	4,5	1.9	138	132	38	38	36	23	28	210

Reaction product identification after secondary target via ToF-∆E-TKE in LYCCA

LYCCA

total kinetic energy, detected by the CsI detectors vs.TOF

separation of the fragmentation product ³³Ar after the target => Mass separation

LYCCA

energy loss ΔE of secondary fragments vs. the TOF from the target position to the LYCCA array for the secondary beam ³⁴Ar. => Isotope separation

The 2⁺ mixed-symmetry state in ⁸⁸Kr

Search for the MS state in ⁸⁸Kr
First identification via RIB experiment
Challenge: higher lying third 2⁺ state
Identification via strong M1 decay

Some experimental details

Primary beam/target
 650 MeV/A ²³⁸U beam
 0.6 g/cm² ⁹Be target

- Secondary beam/target ^{84,88}Kr @ 120 MeV/A $0.4 \text{ g/cm}^2 \text{ Pb target}$ 2+ 2216 1441 2+ 0^+

⁸⁸Kr

	⁸⁴ <i>Kr</i>	⁸⁸ Kr		
	2_{1}^{+}	2_{1}^{+}	2^{+}_{3}	
σ	4.95	3.34		
[<i>mb</i>]				
S2 rate	240000	170000		
[<i>pps</i>]				
RIB	1000	1000		
[<i>pps</i>]				
B(E2)	11.5(2)	8.8(15)	~ 0.8	
[W.u.]				
$\sigma_{\it Coulex}$	220	190	20	
[<i>mb</i>]				
$N_{p\gamma}$	660	570	30	Be
[per day]				Se
				TC

Beam request Set-up (parasitic) 1day+4days

Enhanced B(E2) values towards ¹⁰⁰Sn next step: Coulombexcitation of ¹⁰⁴Sn

Shell Model: F. Nowacki et al., $v(d_{5/2}g_{7/2}s_{1/2}h_{11/2}), e_v = 0.5e,$ $\pi(g_{9/2}g_{7/2}d_{5/2}d_{3/2}s_{1/2}), e_{\pi} = 1.5e$

 πv monopoles tuned to $\pi ESPEs$ and Z=50 shell gap

First RISING result ¹⁰⁸Sn:

A. Banu et al, Phys. Rev. C 72, 061305(R) (2005)

J. Cederkäll et al., Phys. Rev. Lett. 98,172501(2007) A. Ekström et al., Phys. Rev. Lett. 101, 012502(2008) C. Vaman et al., Phys. Rev. Lett. 99, 162501(2007),

GSI result:

P. Doornenbal et al., Phys. Rev. C 78, 031303(R) (2008)

Accepted proposal Coulombexciation of ¹⁰⁴Sn Spokesperson: M. Gorska, J. Cederkall

Summary

- First accepted PRESPEC proposals
- Mirror energy differences of T=3/2 nuclei will show enhanced sensitivity to isospin symmetry violation and shell gap evolution
- •Experiment is crucial for new LYCCA detector
- •Mixed symmetry state in ⁸⁸Kr
- •Coulombexcitation of ¹⁰⁴Sn

•Mid-term perspective for in-beam spectroscopy AGATA demonstrator at FRS

•Long-term HISPEC/DESPEC with AGATA at NUSTAR/FAIR