Gamov-Teller Strength in its Decay ¹⁰⁰Sn: Search for its Isomer Particle Stability of Neighbours

TUM GSI Edinburgh Ankara Belgrade Bratislava GANIL Groningen Köln Krakow MSU RIKEN Surrey Uppsala Warsaw + RISING

S330

Silicon Implantation Detector and Beta Absorber SIMBA

Implantation

RISING

SIMBA

1

EN 18

15 x 7 Germanium detectors

+

€_{Photo}~ 11% @ 662 keV

¹⁰⁰Sn setting (full statistics, 15 days)

what's new?

Proton decay Q-value for ⁹⁷In and ⁹³Ag

with $T_{1/2} > 0.2 \ \mu s$ and L=4 transitions

we get (using Delion et al. PRL96(2006)):

the Q_p values:

	our limit	Lalazissis et al.	Herndl, Brown	Audi et al.
		NPA 679 (2001)	NPA 627 (1997)	NPA 729 (2003)
		rel. H B	shell model	extrapolation
⁹³ Ag	< 1.1MeV	0.11	0.95	1.43(78)
⁹⁷ In	< 1.2MeV	0.37	1.28	1.81(78)

⁹⁷In: 1 decay after 38ms => $T_{1/2} = 26_{-12}^{+125} ms$ => log ft = 3.7 => $T_{1/2}$ (proton) > 40ms => $Q_p < 0.7 MeV$

Isomers?

how does ¹⁰⁰Sn decay?

Correlation of Implantation and Decay

Extraction of Beta Spectrum

Sum over total energy within 3 s after implantation

in implantation zone + calorimeter

not yet tested for uninterrupted tracks

8 conv. line ¹⁰⁰Sn 7 β spectrum 6 5 🔍 no fit counts 4 => 3 2 1 region for centroid 0 500 1000 2500 3000 3500 1500 2000 0 energy [keV]

from centroid $E_{max} = 3.15 \pm 0.20 \text{ MeV}$ $Q_{EC} = 4.17 \pm 0.20 \text{ MeV}$ to excited state preliminary $I_{B} = 85\%$ $\log ft = 2.54 \pm 0.20$ that's record

Gamma Spectrum after Beta Decay of ¹⁰⁰Sn

Gamma Intensities

what do we expect?

The Team

K.Eppinger (1), C.Hinke (1),

M.Böhmer (1), P.Boutachkov (2), T.Faestermann (1), H.Geissel (2), R.Gernhäuser (1),
M.Górska (2), A.Gottardo (3), J.Grębosz (4), R.Krücken (1), N.Kurz (2), Z.Liu (3), L.Maier (1),
S.Pietri (2,5), Zs.Podolyák (5), K.Steiger (1), H.Weick (2), P.J.Woods (3),
N.Al-Dahan (5), N.Alkhomashi (5), A.Atac (6), A.Blazhev (7), N.Braun (7),
I.Čeliković (8), T.Davinson (3), I.Dillmann (1), C.Domingo-Pardo (2), P.Doornenbal (9),
G.de France (10), G.Farelli (5), F.Farinon (2), J.Gerl (2), N.Goel (2), T.Habermann (2),
R.Hoischen (2), R.Janik (11), M.Karny (12), A.Kaskas (6), I.Kojouharov (2), Th.Kröll (1),
M.Lewitowicz (10), Y.Litvinov (2), S.Myalski (4), F. Nebel (1), S.Nishimura (9),
C.Nociforo (2), J.Nyberg (13), A.Parikh (1), A.Procházka (2), P.H.Regan (4),
C.Rigollet (14), H.Schaffner (2), C.Scheidenberger (2), S.Schwertel (1),
P.-A.Söderström (13), S.Steer (4), A.Stolz (15), P.Strmeň (11), H.J.Wollersheim (2),
and the RISING collaboration

(1) TU München, (2) GSI, (3) U of Edinburgh, (4) IFJ PAN Krakow, (5) U of Surrey,
(6) U of Ankara, (7) U of Köln (8) Inst. Vinca Belgrade, (9) RIKEN, (10) GANIL,
(11) U of Bratislava, (12) U of Warsaw, (13) U of Uppsala, (14) KVI - U of Groningen, (15) MSU

The Team

K.Eppinger (1), C.Hinke (1),

