Cross-section measurements for knockout reactions

Vasily Volkov

S341 Experiment

Joachim Enders, Thomas Aumann, Dolores Cortina-Gil, Fabio Farinon, Hans Geissel, Naohito Iwasa, Rudolf Janík, Reiner Krücken, Peter Maierbeck, Chiara Nociforo, Andrej Prochazka, Carme Rodriguez, Haik Simon, Branislav Sitar, Peter Strmeň, Klaus Sümmerer, Vasily Volkov, Helmut Weick, John Winfield

TU Darmstadt / GSI Darmstadt / TU München / U Santiago de Compostela/U Bratislava

Supported by the GSI research & development program and HIC for FAIR

Experimental proposal S341

- Title: Neutron Knockout Reactions from Proton-rich Carbon Isotopes
- Spokesperson: Joachim Enders, TU Darmstadt
- GSI Contact Person: Helmut Weick, GSI Darmstadt
- Year of Approval: 2007 (A)
- Shifts: **7** approved (6 main + 1 parasitic)
 - 7 used (6main + 1parasitic)
 - 0 left (0 main + 0 parasitic)

Motivation: Spectroscopic factors

Spectroscopic factors

- occupation probability depends on binding energy
- experimental access
 - transfer reactions
 - electron-induced knockout
 - nucleus-induced knockout
 - nucleon-induced knockout

Knockout from ¹⁰C/¹¹C

 learn about evolution of spectroscopic factors in the deeply-bound 0p_{3/2} neutron shell

One-nucleon knockout

- Quenching of spectroscopic factors
- Experimental spectroscopic factors smaller than predicted within the shell model
- Mass region accessible by ab-initio models
- More data for the large separation energies needed

One-nucleon knockout reactions

- Reaction of type ⁹Be(¹⁰C,⁹C)X
 - inclusive reaction only if nuclear structure of the residue is "simple"
 - only one bound state in ⁹C
 - High sensitivity
 - fast beams, thick targets
 - measure small cross sections
 - low incident beam intensities
- Eikonal approximation appropriate for describing the reaction mechanism
 - reliable extraction of spectroscopic factorsx

Motivation: two-neutrons knockout

- Direct reaction or not?
- Cross-section
- Spectroscopic factor?

Image taken from Bachelor diploma paper 'Two-Neutron Knockout Reactions from ¹¹C' by Matthias Holl (TUD, April 2009)

Experimental Setup

Particle identification

- Charge identification of incoming particles
 A/Z identification of the frequence
- A/Z identification of the fragments

Measured cross-sections, one-neutron

$$\sigma_{\rm exp} = \frac{\frac{N_s}{N_i} \cdot A}{N_A \cdot L \cdot \rho} =$$

Where:

- N_s number of scattered particles
- N_i number of incident particles
- A molar mass
- $L \cdot \rho$ target thickness in mg/cm²

- Background from the matter in beamline substracted
- •Corrected for the losses
- Corrected for the efficiency
- Corrected for the optical transmission

Theoretical prediction for $^{10}C{\rightarrow}^9C$

- The quenching factor obtained in the experiment is $R_s=0.53$
- About 60% lower than predicted

Comparison with theory

	СК	GFMC*
C^2S	1.73	1,04
R_s	0.53	0.88

*Green Function Monte-Carlo (R.B. Wiringa, Priv.Com)

One-nucleon knockout

- Theoretically predicted quenching factor is larger
- Spectroscopic factor depends not only on binding energy
- Good agreement with Green Function Monte-Carlo ab-initio calculations
- Further datasets to be analysed

Two-nucleon knockout

 $\sigma = (8.40 \pm 0.31)mb$

Analysis, this and further images by **Matthias Holl**

Two-neutron knockout: momentum distribution

Distribution width:

 $\sigma_{p,CM} = (132, 98 \pm 6, 48) MeV/c$

Information on the reaction mechanism:

Comparison with sequential one-neutron knockout distributions

Sequential knockout of two neutrons

Summary & Outlook

- Cross-sections measured for:
- \rightarrow One-neutron knockout
- \rightarrow Two-neutron knockout
- \rightarrow Two-proton knockout
- Momentum distribution for two-neutron knockout studied
- $\rightarrow\,$ Two-neutron knockout found to be direct reaction
- To do:
- \rightarrow Cross-section for ${}^{9}Be({}^{9}C, {}^{8}B)X$
- $\rightarrow\,$ Datasets for other reactions measured are to be analysed