

university of groningen

Status of the (Super-)FRS cryogenic stopping cell S411

Peter Dendooven KVI – University of Groningen

FRS User Meeting - GSI, Darmstadt 8-9 November 2010

Collaboration

Spokesperson: **Co-spokesperson:** GSI contact person: Kernfysisch Versneller Instituut

> university of groningen

W.R. Plaβ S. Purushothaman T. Dickel H. Geissel I.D. Moore H. Penttilä M. Ranjan D. Schäfer C. Scheidenberger P. Thirolf H. Weick JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN UNIVERSITY OF JYVÄSKYLÄ

P. Dendooven

KVI – U Groningen GSI, U Gieβen GSI U Gieβen GSI, U Gieβen U Jyväskylä U Jyväskylä KVI – U Groningen U Gieβen GSI, U Gieβen LMU München GSI, U Gieβen

Peter Dendooven – KVI / University of Groningen

Status of the (Super-)FRS cryogenic stopping cell

FRS User Meetina

The Super-FRS Low-Energy Branch

cryogenic stopping cell is part of the ion catcher apparatus transforming the Super-FRS ions into a low-energy ion beam

Stopping cell principles

- high-energy ions stopped in noble gas
- stopped ions transported using DC and RF fields to exit-hole
- extraction by gas flow

from simulations of Super-FRS

(Helmut Weick, Chiara Nosiforo)

range: up to 20 mg/cm² He (~1 meter bar at room temperature)

lateral size: 25 x 10 cm²

ionisation rate density: up to 10¹¹ /cm³ /s for selected beams (no worry at the moment)

- need to be efficient (low production rates)
- need to be fast (short half-lives)

S258 vs. S411 (present experiment)

successful proof-of-principle

suffered from:

- 1. poor stopping efficiency
- 2. presence of impurities

solutions now implemented:

- 1. high-density operation
- 2. cryogenic operation

Status of the (Super-)FRS cryogenic stopping cell

High density is challenging

we aim to extend the operating density of these devices

- Ultra-pure helium: ideal for ion survival P. Dendooven et al., NIM A 558 (2006) 580
- Possible survival as 2+ ions faster extraction
- Ultra-high vacuum standard not required easier, more flexible construction
- Operational reliability !

Cryogenic stopping cell design

Cooling system schematic

Stopping cell + cooling system

thickness: 0.8 mm diameter: 250 mm number of rings: 500 electrode spacing: 0.25 mm PCB material: Rogers 4000

Peter Dendooven – KVI / University of Groningen

Status of the (Super-)FRS cryogenic stopping cell

FRS User Meeting

The RF carpet close-up

front side

back side

Peter Dendooven – KVI / University of Groningen

Status of the (Super-)FRS cryogenic stopping cell

FRS User Meeting

Off-line assembly

Peter Dendooven – KVI / University of Groningen

Status of the (Super-)FRS cryogenic stopping cell

FRS User Meeting

Assembly

Peter Dendooven – KVI / University of Groningen

Status of the (Super-)FRS cryogenic stopping cell

FRS User Meeting

Peter Dendooven – KVI / University of Groningen

Status of the (Super-)FRS cryogenic stopping cell

FRS User Meeting

The off-line test: schematic

Status of the (Super-)FRS cryogenic stopping cell

The off-line test set-up at KVI

Peter Dendooven – KVI / University of Groningen

Status of the (Super-)FRS cryogenic stopping cell

FRS User Meeting

The off-line test in progress

Status of the (Super-)FRS cryogenic stopping cell

FRS User Meeting

Proof of ion extraction

Status off-line commissioning

 \rightarrow extraction efficiency: 2.8 % \rightarrow ~10% of the maximum achievable efficiency (30%)

next:

 \rightarrow continue efficiency optimization vs. p, DC, RF

 \rightarrow pulsed source for transport time measurements

Experimental setup at the FRS

MR-TOF-MS as diagnostic tool

- off-line commissioning at KVI is ongoing
 - ✓ 2.8 % efficiency reached (unoptimized)
- cooling system has been ordered
- installation at FRS is being prepared at Gie β en/GSI

Aim:

performance tests and on-line characterization of a *new device* based on a *new concept* (worldwide the first cryogenic stopping cell that is used on-line?!)