Preparation and status of E100: β_b decay of bare ²⁰⁵TI⁸¹⁺ #### FRS/ESR-proposal approved in April 2010 Fritz Bosch for the collaboration: - F. Bosch, C. Brandau, C. Dimopoulou, H. Geissel, S. Hagmann, F. Herfurth, O. Klepper, R. Knöbel, Ch. Kozhuharov, J. Kurcewicz, D. Liesen, S. Litvinov, R. Mann, Ch. Nociforo, F. Nolden, Ch. Scheidenberger, U. Spillmann, M. Steck, Th. Stöhlker, K. Takahashi, H. Weick, M. Winkler, D. Winters, GSI Helmholtzzentrum Darmstadt - Z. Djurcic, W.F. Henning, Argonne IL - M.K. Pavicevic, I. Anicin, B. Boev, V. Pejovic, University of Belgrade - B. S. Meyer, Clemson University, SC - B. Boev, University of Stip, FYRMacedonia - Yu. Litvinov, D. Shubina, N. Winckler, K. Blaum, MPI-K Heidelberg - Th. Faestermann, P. Kienle, L. Maier, E. Wefers, E12 TU Munich - G. Amthauer, University of Salzburg # Bound-state β decay (β_b) of ²⁰⁵TI⁸¹⁺ $$Q_{\beta b}(bare) = -Q_{EC} - |\Delta B_e| + |E_B(K,L...)|$$ $Q_{\beta b}(K) = -50.5 \text{ keV} - 19.5 \text{ keV} + 101 \text{ keV} = +31 \text{ keV}$ # Physics case 1 ²⁰⁵TI in lorandite (TIAsS₂) at the Allchar mine is a long-time detector of solar pp neutrinos with the lowest threshold of 52.8 keV (GALLEX ≈ 232 keV): $$^{205}\text{TI} + v_e(E_{ve} \ge 53 \text{ keV}) \rightarrow ^{205}\text{Pb*} (2.3 \text{ keV}) + e^-(>93\%)$$ The ratio ²⁰⁵Pb/²⁰⁵TI (background-corrected) provides the **product** of the mean solar pp neutrino flux Φ_{ve} and the capture cross section σ_{ve} within 4.3 · 10⁶ y [1] $$<\Phi_{ve}\cdot\sigma_{ve}>$$ The β_b decay-probability of bare $^{205}\text{TI}^{81+}$ provides the unknown nuclear matrix element for the v_e capture [2] (M.K. Pavicevic, P. Kienle, W.F. Henning, 1990) ## Physics case 2 ²⁰⁵Pb is the **only purely s-process** "short-lived" (10⁷ y) radioactivity (**SLR**) alive in the early solar system It provides insight on s-nucleosynthesis just after decoupling and prior to the Sun's birth ``` N(^{205}Pb)/N(^{204}Pb) = (k+2) P(^{205}Pb)/P^{204}Pb) \cdot T_{Pb-205}/T_G [3] abundances in ISM s-production rates 2 \cdot 10^7 \text{ y/8} \cdot 10^9 \text{ y} \approx 10^{-3} (measured) [4] \approx 1 (assumed) \approx 3 \cdot 10^{-3} (K. Takahashi, B.S. Meyer) ``` # 205Pb strongly reduced by free EC from 2.3 keV state [5] → injection of s-matter from a (AGB) star needed [6] Counter-balanced by the β_b decay of highly ionized ²⁰⁵TI? [7] → λ_{βb} of bare ²⁰⁵TI provides the mean lifetime of ²⁰⁵TI in the s-process environment Sunday, April 18, 2010 Why is the old E019 proposal from 1992 **now** feasible? (We were and still are **not** allowed to accelerate ²⁰⁵TI) Estimated β_b half-life of bare ²⁰⁵Tl⁸¹⁺: **120 d** [7] (...1 y...) For 30...100 β_b daughters ²⁰⁵Pb⁸¹⁺/hour in the ESR ≈ 2...6 · 10⁵ stored and cooled ²⁰⁵Tl⁸¹⁺ ions needed - 1. Improvements of ion source, stripping, mult-multi inj. and cooling in SIS yielded 2·10⁹ ²⁰⁸Pb at FRS (S 312, 2007 [8]) - → 1·10⁹ ²⁰⁶Pb can be expected at FRS → 1·10⁵ ²⁰⁵TI⁸¹⁺ in ESR (σ = 17 mb, 3% transmission) - 2. Accumulation by rf-stacking (bucket transfer) and stochastic cooling (2000, [9]) - → 2...6·10⁵ ²⁰⁵TI⁸¹⁺ stored and cooled in ESR - 1. Inject 10⁵ ²⁰⁵TI⁸¹⁺/shot from FRS - 2. Accumulate in ESR to about 5 · 10⁵ - 3. Store at different times (few hours) - 4. Parent- (205TI81+)- and β_b-daughter (205Pb81+)-line not separated in the Schottky spectrum - 5. Turn on a gas jet (Argon) for about 2 minutes - →K electron of ²⁰⁵Pb⁸¹⁺ stripped-off - 6. Get resolved bare ²⁰⁵Pb⁸²⁺ Number measured via Schottky-noise or by means of an in-ring detector Same technique as applied for ¹⁶³Dy and ¹⁸⁷Re [10,11] PRL 77, 5190 (1996) [11] FIG. 3. Position spectrum of ions deflected by the first dipole magnet behind the gas jet target. The narrow peak in the middle of the spectrum is due to $^{187}\mathrm{Os}^{76^+}$ nuclei from the β_b decay of $^{187}\mathrm{Re}^{75^+}$. The background from elastic scattering (full drawn) and from nuclear reactions (dotted) has been determined in separate runs. The inset shows the results of ten individual measurements for the decay constant in form of an ideogram, as prescribed in the Review of Particle Properties [15]. The full drawn curve, the sum of Gaussians for each measurement, serves mainly to judge the consistency of the data. ### Summary: Preparation and status of E100 ``` For \geq 1.10^{9.206}Pb ions/extraction in the FRS (S 312, 2007 [8]) N(^{205}TI^{81+}) \approx 1 \cdot 10^{5}/injection expected in the ESR After accumulation by rf-stacking → 2...6 ·10⁵ ²⁰⁵Tl⁸¹⁺ stored → After 1 h storage ≈ 30....100 bare ^{205}Pb⁸²⁺ (ε = 0.75) → No enrichment of ²⁰⁶Pb (25%) in a Penning source needed 8 shifts for tuning of ion source, FRS and ESR, In-flight fragmentation, multi-injection from FRS Stoch. cooling and bucket transfer (rf-stacking) 8 shifts to get 2...6 · 10³ β_h decays in the ESR 2 shifts for the capture-to-ionization ratio at gas jet ``` Approved for E100 in April 2010: 18 shifts ("A") #### References - [1] M.K. Pavicevic et al., NIMA **271**, 277 (1988) - [2] P. Kienle et al., NIMA **271**, 287 (1987) - [3] G.R. Huss et al., GCA **73**,4922 (2009) - [4] R.G.A. Baker et al., Earth and Planet. Sci. **291**, 39 (2010) - [5] J.B. Blake and D.N. Schramm, ApJ. **197**, 615 (1975) - [6] G.J. Wasserburg et al., Nucl. Phys. **A777**, 5 (2006) - [7] K. Takahashi et al., Nucl Phys. **A404** (1983)K. Yokoi et al., Astron. + Astroph. **145**, 339 (1985) - [8] U. Scheeler, priv. comm. April 2010 - [9] M. Steck, priv. commun. April 2010 - [10] M. Jung et al., PRL **69**, 2164 (1992) - [11] F. Bosch et al., PRL 77, 5170 (1996)