

Systematic Study of PDR, GDR and GQR for the Chain of Tin Isotopes

s412 experiment for the \mathbb{R}^3B collaboration

FRS User Meeting

09.11.2010

Measurement of Pygmy Dipole Resonances

- A. Klimkiewicz et al., Phys. Rev. C 76, 051603(R) (2007)
- Pygmy Dipole Resonances (PDR) have been observed previously in Sn isotopes at LAND
- Overlap of PDR and GDR strength at low energies due to detector response
- Staggered PDR distributions in odd / even isotopes
- PDR strength distribution below or above neutron threshold, or varies with threshold?

Experiment Overview

- Aims of proposed experiment:
 - Systematic investigation of E1 strength in Sn isotopic chain from A = 124 to 134
 - 2. PDR measurement below and above the neutron threshold
 - 3. Measurement of E2 strength in ¹²⁴Sn to ¹²⁸Sn
 - 4. Excitation with isoscalar probe (CD₂ target)
- Improvements compared to previous experiments
 - Better mass resolution
 - Improved detector response
 - Better statistics

Aim of Proposed Experiment

- 1. Measurement of isovector GDR in complete Sn isotopic chain from A = 124 to 134 with high statistics
 - Reduce statistical error for the systematical extraction of GDR parameters
 - Observation of direct photon-decay of GDR
 - Measurement of stable isotope for comparison with other experimental data
- 2. Measurement of PDR in complete Sn isotopic chain below and above the neutron threshold
 - Measurement of (γ, xn) and (γ, γ') channels
 - \Rightarrow PDR strength distribution independent of neutron threshold

Aim of Proposed Experiment (cont'd)

3. Measurement of GQR in ¹²⁴Sn to ¹²⁸Sn

- Two beam energies required to disentangle E1 and E2 components
- Requires total E1+E2 strength distribution with good statistics

- Example:
 - ¹³²Sn at 600 and
 300 AMeV
 - 100% TRK sum rule strength for E1
 - 100% EWSR
 strength for E2

Aim of Proposed Experiment (cont'd)

J. Endres et al., Phys. Rev. C 80, 034302 (2009)

4. Investigation of the isospin character of the low-lying dipole strength

- Nuclear inelastic scattering with an isoscalar probe, using (d,d'γ)
- Analysis of photon decay branch allows the selection of dipole excitations
- Foreseen for high-statistics beams, such as ¹²⁴Sn and ¹²⁸Sn

Experiment setup

Technical Improvements

- New readout electronics for LAND and Crystal Ball Incoming tracking with diamond or Si microstrip detector
- Use of thinner Pb target (100 mg/cm²) for (γ,γ') measurements
 → reduction of amount of Bremsstrahlung
- Vacuum pipe for fragments up to the last position measurement
- New plastic fiber detector for first position measurement after magnet; 250 μ m pitch and 250 μ m thickness

Summary of Beam-time Request

	setting 1	setting 2	setting 3	setting 4	setting 5	setting 6	setting 7
		2 energies	2 energies	2 energies	2 energies		
Primary beam int. (1/sec)	136 Xe 2×10 ¹⁰	^{136}Xe 2×10 ¹⁰	136 Xe 2×10 ¹⁰	136 Xe 2×10 ¹⁰	136 Xe 2×10 ¹⁰	²³⁸ U 2×10 ⁹	²³⁸ U 2×10 ⁹
Sec. beam int. (1/sec)	¹³⁶ Xe 10 ⁴	¹²⁴ Sn 10 ⁴	¹²⁶ Sn 10 ⁴	¹²⁸ Sn 10 ⁴	¹³⁰ Sn 5000	¹³² Sn 300	¹³⁴ Sn 10
Measurements	calibration GDR Pygmy γ,γ'	GDR Pygmy γ,γ' d,d' GQR	GDR Pygmy γ,γ' GQR	GDR Pygmy γ,γ' d,d' GQR	GDR Pygmy γ,γ' GQR	GDR Pygmy	GDR Pygmy
Target							
Pb	2	2+2	2+2	2+2	2+2	6	6
Ве	0.5	0.5+0.5	0.5+0.5	0.5+0.5	0.5+0.5	1	1
CD2		4		4			
С		1.5		1.5			
empty	0.5	0.5+0.5	0.5+0.5	0.5+0.5	0.5+0.5	1	1
setting FRS	0.5	1	0.5	0.5	0.5	2	1
Sum setting	3.5	12.5	6.5	12	6.5	10	9
Total requested:		60 (20 d)	Total allocated:		54 (18 d)		

Characterization of NeuLAND Prototypes and of the LAND Detector Using Fast "Monoenergetic" Neutrons

s406 experiment

for the \mathbb{R}^3B collaboration

Aim of Proposed Experiment

- Proof-of-principle for NeuLAND full-size prototypes
 - time resolution
 - efficiency as a function of neutron energy
 - \rightarrow critical decision towards TDR !!!
- Recalibration of LAND after 20 years of operation and after installation of new electronics
 - time resolution
 - efficiency as a function of neutron energy
 - one-neutron data sets as input to detector simulation
 - two-neutron data sets as cross-check for detector simulation
 - check of neutron simulations \leftrightarrow NeuLAND

Source of high-energy "monoenergetic" neutrons?

quasi-free scattering reaction in inverse kinematics:

d-beam on CH₂ target

Neutrons from quasi-free scattering with defined energy and angle on an event-by-event basis

Experiment setup

quasi-free scattering reaction in inverse kinematics:

Program and beam request for the beam time

 a) general setup of all detectors plus trigger b) time resolution of LAND and NeuLAND prototypes 1500 AMeV 	→ 1 sh
LAND: 2 distances and with 2 Targets (CH ₂ , C): 4 NeuLAND prototypes , full acceptance at 5 m, ~1% eff.	→ 2 sh → 2 sh
c) energy-dependent efficiency of NeuLAND prototypes 4 NeuLAND prototypes: 200, 300, 500, 800 MeV.	\rightarrow 5 sh
d) full characterization of LAND for one neutron events efficiencies and data patterns, measurements at 200, 400, 600, 800, 1050 MeV at typical experiment distance (12m), high statistics required for data patterns	\rightarrow 4 sh
 e) characteristics of LAND for real two-neutron events break up from tritium, 400 and 800 AMeV Beam preparation (FRS or stripper + direct beamline) & data taking 	\rightarrow 4 sh

