Spokesperson: Michael Wiescher GSI contact: Michael Heil

Measurement of ⁵⁹Fe(n,γ)⁶⁰Fe using the Coulomb Dissociation Method

Motivation

The observation of radioactive isotopes such as ¹⁸F, ²²Na, ²⁶Al, ⁴⁴Ti, and ⁶⁰Fe in our galaxy is a direct measurement of stellar nucleosynthesis products.

The measured ratio of ⁶⁰Fe and ²⁶Al allows to test the complex models of massive-star nucleosynthesis.

Provided we know about the nuclear reaction rates for production and destruction of these isotopes we will get information on:

- temperature
- density
- convection zones

inside stars and their

frequency.

Detection of ⁶⁰Fe with the SPI spectrometer aboard ESA's INTEGRAL space mission.

Detection of ⁶⁰Fe in layers of a Deep-Sea manganese crust with AMS gives evidence for a nearby SN 2.8 Myr ago at a distance of a few 10 pc.

Production of ⁶⁰Fe in massive stars

⁶⁰Fe is produced in massive pre-supernovae stars by neutron capture reactions.

Requirement: We need to know the production and destruction mechanism of ⁶⁰Fe:

- Production by ⁵⁹Fe(n,γ)⁶⁰Fe
- Destruction by ⁶⁰Fe(n,γ)⁶¹Fe, β-decays, ⁶⁰Fe(γ,n)⁵⁹Fe

Production of ⁶⁰Fe depends most strongly on ⁵⁹Fe(n, γ)⁶⁰Fe

Direct laboratory investigation of the ${}^{59}Fe(n,\gamma){}^{60}Fe$ not possible because of the relatively short lifetime of ${}^{59}Fe$ isotope (T_{1/2}=44.5 d).

Experimental method

Measurement of the time reversed reaction using Coulomb breakup:

- Measure CD cross section: ${}^{60}\text{Fe} \neq {}^{208}\text{Pb} \rightarrow {}^{59}\text{Fe} + n + {}^{208}\text{Pb}$ (CD)
- Determine photo-absorption cross section $\sigma_{(\gamma,n)}$
- Determine ⁵⁹Fe(n, γ)⁶⁰Fe cross section with detailed balance.

⁶⁰Fe(γ ,n)⁵⁹Fe is more complex and may require substantial corrections for γ -cascade patterns. Therefore, we propose to study also ⁵⁹Fe(γ ,n)⁵⁸Fe and compare it to the (n, γ) measurements.

Experimental setup

Standard ALADIN/LAND setup:

FRS settings

Primary beam: ⁶⁴Ni at 660 AMeV (1E8 pps) Target: 2513 mg/cm2 S2: 3.250 mm Wedge: 2000 mg/cm2 Al S8: 1 mm Beam energy on target 535 AMeV ($B\rho$ =8.56 Tm)

Important: Slits at S1: ± 35 Slits at S8: ± 20

Count rate on S2 should be less than 1MHz in order to use S2 scintillator for position determination.

particle ID with position correction of S2

Summary

- Successful experiment performed!
- This experiment will provide detailed information about the $^{60}Fe(\gamma,n)^{59}Fe$ dissociation cross section
- This experiment will provide detailed information about the strength of the ground state transition of the ${}^{59}Fe(n,\gamma){}^{60}Fe$ capture reaction
- This experiment is part of a larger experimental effort:
 - 60 Fe(n, γ) 61 Fe activation measurement at FZ Karlsruhe
 - ⁶⁰Fe half-life measurements at NSCL

 The γ-decay of the unbound states in ⁶⁰Fe will be measured in a separate study using photo-excitation techniques at the DALINAC facility at the TU Darmstadt or the HIγS Facility at TUNL Duke University in collaboration with local groups

PhD students: Tanja Heftrich and Ethan Uberseder