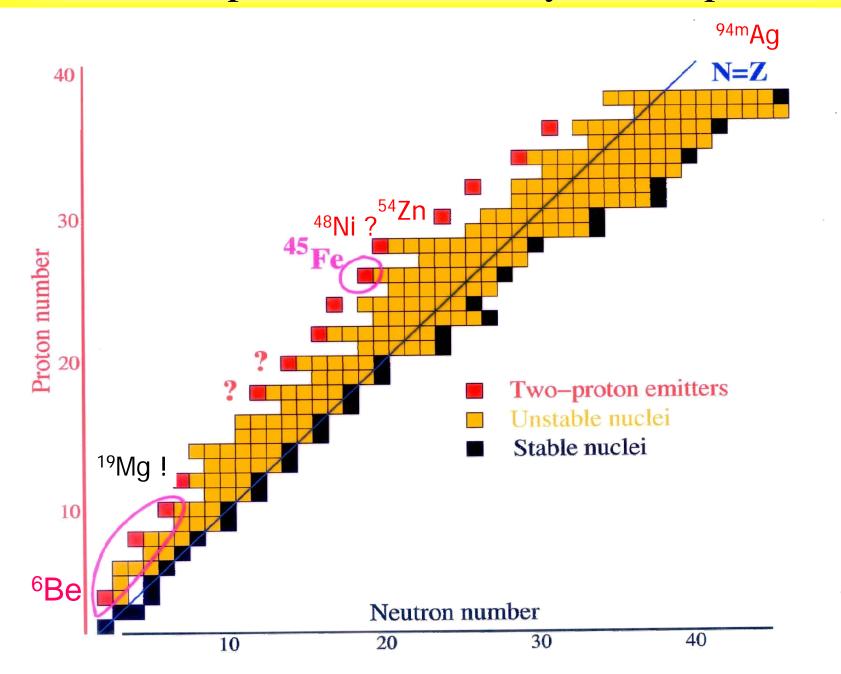
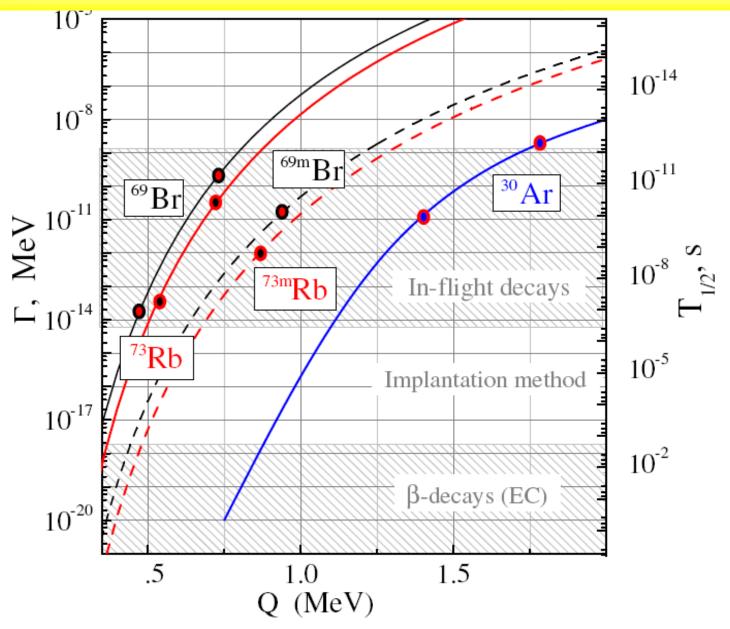
Experimental Proposal S388

- Title <u>"Search for two-proton decay of ³⁰Ar</u> <u>in flight by tracking technique"</u>
- Spokesman: <u>I. Mukha, GSI</u>
- GSI Contact Person: Y. Litvinov, Heidelberg Univ.
- Year of Approval: <u>2008</u>
- Shifts: 19 approved (main + parasitic)
 0 used (main + parasitic)
 <u>19 left (main + parasitic)</u>

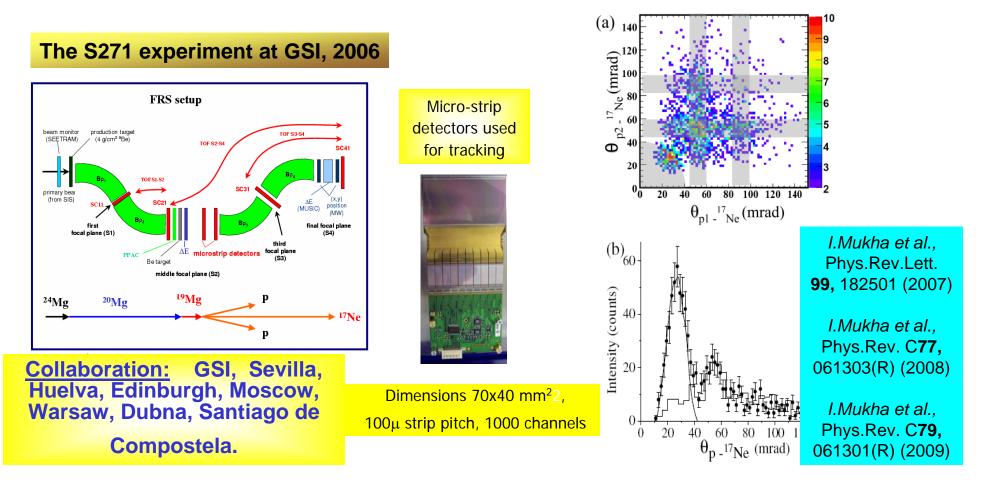

Physics Motivation

 Nuclear structure beyond the proton drip line, two-proton radioactivity, unknown 1p, 2p unbound isotopes

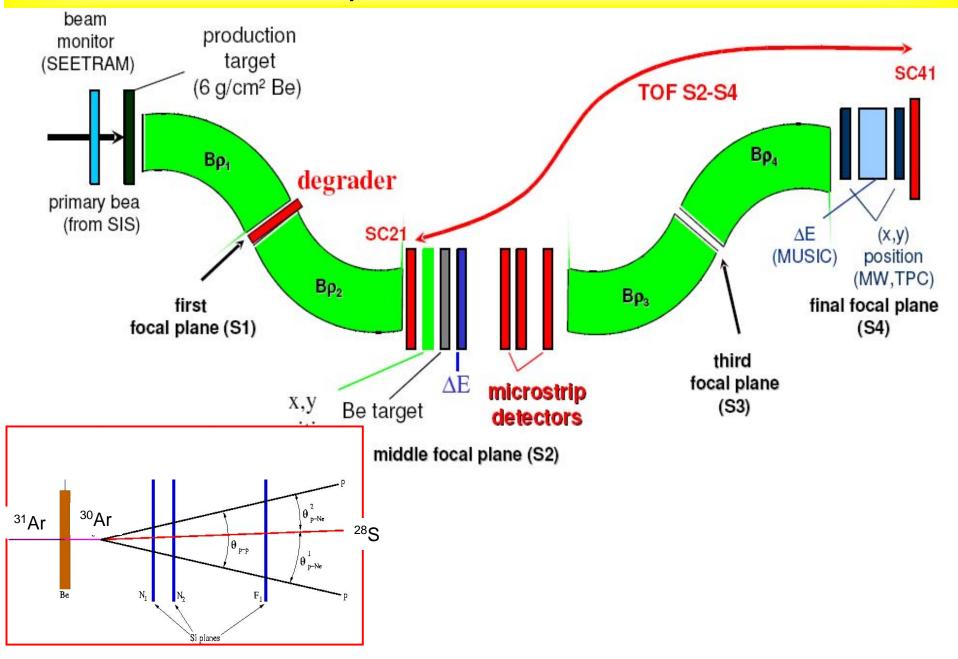
Goals of the experiment


- Search for 2p decays of unknown ³⁰Ar, ²⁶S
- Measurements of 2p decays of ¹⁶Ne and ¹²O
- Measurements of 1p-emitters ³⁰Cl, ²⁵P

Two-proton radioactivity landscape


Why? 2p-landscape

Predicted half-lives of ³⁰Ar, ⁶⁹Br, ⁷²Rb



Discovery of ¹⁹Mg and it's two-proton decay in-flight by tracking fragment trajectories with micro-strip detectors

- The unknown isotope ¹⁹Mg is observed by using the novel tracking technique.
- Two-proton decay with T_{1/2}=4.1(1.5) ps and Q_{2p}=0.75(5) MeV was detected by measuring decay vertices and fragment correlations from coincident ¹⁷Ne+p+p events.
- Three-body decay mechanism of 2p radioactivity has been confirmed.

Experimental method

Setup

- FRS standard focal planes equipment:
- S1: MW11;
- S2: MW21,SCI21,TPC21;
- S3: SCi31;
- S4: MW41, SCI41, TPC40, MUSIC, TPC41
- The same <u>setup to be assembled at S2</u> as in the previous S271 experiment.
- <u>Non-standard equipment required</u>: microstrip Si detectors + electronics at S2, a wedge degrader at S1.
- No modification or a new DAQ required.
- 1000 MeV/u primary beam of ³⁶Ar with intensity 10¹¹ pps.
- 19 shifts are requested in 2010.

Additional/specific information

- The ~200 mrad wedge degrader (the same as in S271) to be re-installed in the pocket at S1.
- The ~1m vacuum tube at S2 to be replaced by the S271 vacuum chamber with the microstrip detectors and 2 Ti vacuum windows on D2 and D3.
- A byproduct study of beta, 2p decays of ²⁶S with the PRESPEC active stopper is possible (optional).

Participants and institutions

T. Aumann, L. Acosta, M.A.G. Alvarez; R. Berjillos; P. Boutachkov; E. Casarejos; D.
Cortina-Gil; J. Duenas; J.M. Espino; A. Fomichev; J.E. Garcia Ramos; H. Geissel; J.
Gomez-Camacho; L. Grigorenko; M. Heil; D. Jenkins; A. Kelic; O. Kiselev; A.
Korsheninnikov; N. Kurz; Yu. Litvinov; I. Martel; I. Mukha; C. Nociforo; M. Pfützner;
E.C. Pollacco; E. Roeckl; A. Sanchez-Benitez; H. Schatz; C. Scheidenberger; B.
Streicher; K. Sümmerer, O. Tarasov; H. Weick; P. Woods

GSI, Darmstadt, Germany; University of Seville, Spain; University of Huelva, Spain; University of Santiago de Compostela, Spain; Kurchatov Institute, Moscow, Russia; University of York, UK; JINR, Dubna, Russia; **Paul Scherrer Institut, Villigen, Switzerland;** University of Warsaw, Poland; CEA Saclay, DAPNIA/SPhN, Gif-sur-Yvette Cedex, France; NSCL, Michigan State University, East Lancing, USA; University of Edinburgh, UK

S388 summary

The physics topics:

Nuclear structure beyond proton drip line. Two-proton radioactivity. Nuclear astrophysics.

We intend to search for:

• Two-proton decays of the unknown isotopes ³⁰Ar, ²⁶S(optional), their halflife and decay energy.

• One-proton decay of the unknown isotope ³⁰Cl its half-life and decay

energy.

Detection technique:

• Tracking of all decay products by micro-strip detectors.

We are granted:

19 shifts of a 1 GeV/u beam of ³⁶Ar from SIS with intensity 10¹¹ pps.
<u>We need</u>

• MUCIS ion source and FRS with a standard+user setup at S2.

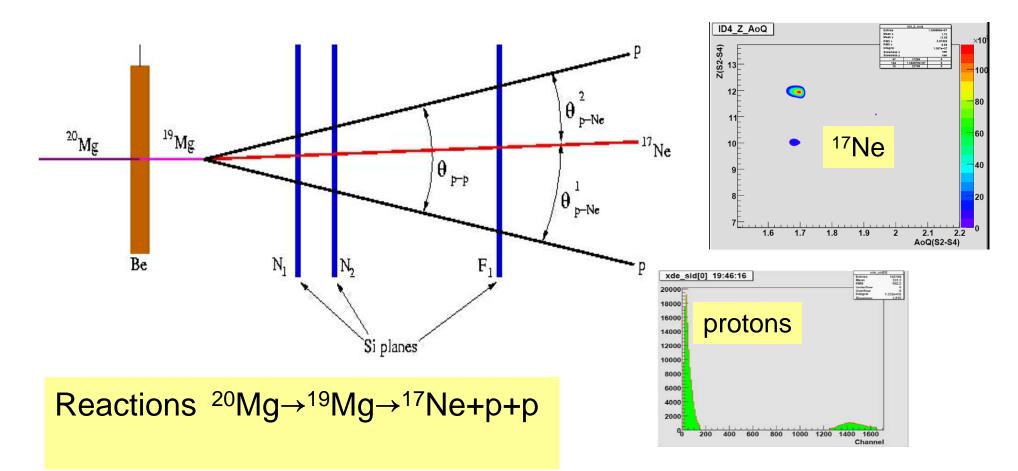
Half of the beam request on ⁶⁹Br and ⁷³Rb is deferred

Nuclear astrophysics.

 <u>Next experiment:</u>
 A search for two-proton radioactivity of ²⁶S, the proposal S414 is deferred.

S388 is a bottleneck for the other experiments:

Expected yields of ⁷³Rb, ⁶⁹Br, ³⁰Ar


TABLE II: Estimates of production rates of ⁷³Rb, ⁶⁹Br, ³⁰Ar at FRS by using Monte Carlo simulations [35] and systematics of cross-sections in fragmentation reactions [39]. The ⁷⁸Kr, ³⁶Ar primary beam intensities are 10¹⁰ and 10¹¹ ions per spill, respectively. The thickness of primary ⁹Be target is 5 g/cm². Production rates of ¹⁹Mg and ¹⁶Ne were measured [7, 8], and they are estimated for calibration measurements.

Energy	Primary	σ_1 ,	Intensity	Secondary	Target	σ_2 ,	Production	Counting
MeV/u	reaction	μb	at S2,	reaction	⁹ Be,	$^{\mathrm{mb}}$	rate, per	rate, per
			ions/spill		$\rm g/cm^2$		100 spills	1 hour
1000	${}^{9}\mathrm{Be}({}^{78}\mathrm{Kr}, {}^{74}\mathrm{Rb})$	0.15	130	${}^{9}\text{Be}{}^{'^{74}}\text{Rb}, {}^{73}\text{Rb})$	3.6	3.3	10.3	38
1000	${}^{9}\mathrm{Be}({}^{78}\mathrm{Kr}, {}^{70}\mathrm{Br})$	9.2	8000	${}^{9}\mathrm{Be}({}^{70}\mathrm{Br}, {}^{69}\mathrm{Br})$	3.6	4.5	860	3000
1000	$^9\mathrm{Be}(^{36}\mathrm{Ar},^{31}\mathrm{Ar})$	0.083	420	⁹ Be ⁽³¹ Ar, ³⁰ Ar)	3.6	0.18	1.8	6
1000	${}^{9}\mathrm{Be}({}^{36}\mathrm{Ar}, {}^{20}\mathrm{Mg})$	1.9	2000	${}^{9}\mathrm{Be}({}^{20}\mathrm{Mg}, {}^{19}\mathrm{Mg})$	3.6	0.28	14	50
1000	${}^{9}\mathrm{Be}({}^{36}\mathrm{Ar}, {}^{17}\mathrm{Ne})$	40	25000	${}^{9}\mathrm{Be}({}^{17}\mathrm{Ne},{}^{16}\mathrm{Ne})$	3.6	0.76	460	1600
1000	${}^{9}\mathrm{Be}({}^{36}\mathrm{Ar}, {}^{13}\mathrm{O})$	50	28000	${}^{9}\text{Be}({}^{13}\text{O},{}^{12}\text{O})$	3.6	0.37	250	900

All in all, we request 29 shifts. For the first part, we need 16 shifts of an 1000 MeV/u primary beam of 36 Ar from SIS with a maximum intensity of 10^{11} ions per spill. For the second part, we request 13 shifts of a 1000 MeV/u primary beam of 78 Kr from SIS with a maximum intensity of 10^{10} ions per spill.

Close-up view

Identification of fragments

