Experiment S323: β-Decay of very neutron-rich Rh, Pd, Ag nuclei including the r-process waiting point ¹²⁸Pd

K. Smith

Spokesperson: F. Montes

GSI-Contact Person: C. Nociforo, I. Dillmann

Approved April 2006

Presented in FRS Users' meeting 2007, 2008, 2009, 2010

http://groups.nscl.msu.edu/nero/Web/S323/index.html

Motivation

- 128Pd is first bottleneck isotope of the N=82 abundance peak (sets timescale for following nucleosynthesis)
- 128Pd half-life affects predictions of Th, U cosmochronometers in ultra-metal poor stars
- β-delayed neutron emission probabilities (P_n) are direct inputs in r-process calculations: set abundances in the important A=115-125 region
- Both half-lives and P_n values are rough indicators of nuclear structure (reliable extrapolations to more exotic nuclei)

¹²⁸Pd production

- Recently measured ^{127,128}Pd, ^{123,124}Rh fission rates from Be (RIKEN)
- Experimental ²³⁸U on Pb fission rates used for fission step ²³⁸U→ ¹²⁹Ag, ¹³⁰⁻¹³¹Cd, ¹³¹⁻¹³²In, ¹³²⁻¹³⁴Sn, ¹³³⁻¹³⁶Sb, ¹³⁴Te
- COFRA rates used for fragmentation to ¹²⁸Pd

Production setting

Be 1.5g/cm² production setting has a larger acceptance for all isotopes of interest 6 particles per spill total implantation rate

	implants/ day	detected beta/day	theoretical Pn[%]	detected beta-n/day
129Ag	223	201	13.1	11
128Ag	2889	2600	4.9	51
127Ag	21393	19253	4.6	354
128Pd	4	3	7.6	0
127Pd	23	21	3.9	0
126Pd	222	200	2.9	2
125Pd	1286	1157	1.5	7
124Pd	12234	11011	0.4	18
124Rh	21	19	11.2	1
123Rh	157	141	12.5	7
122Rh	912	821	10.5	34
121Rh	5944	5350	6.6	141

- Be target 1500 mg/cm²
- Al wedge 500 mg/cm²
- Beta efficiency 90%
- Neutron detector efficiency 40%

Neutron number N

Experimental setup

Fragment Separator GSI

Detectors at S2:

TPC1 + TPC2 + Scintillator

Implant-decay station and neutron detector

Detectors / DAQ

- Implantation/decay system SIMBA has been mounted in a cylindrical container such that it can be surrounded by the BELEN detector (SIMBA detector ready to be installed)
- Polyethelene matrix is ready to be milled to hold the BELEN and SIMBA detectors. Additional shielding will be used to block beam-related neutrons.
- 10 additional ³He tubes for BELEN have been ordered in addition to the current 20 increasing efficiency to ~46% (**BELEN will be ready beginning 2011**)
- Data Acquisition system was written during the BELEN neutron detector test and with the addition of SIMBA is ready to be tested with the full-setup (DAQ ready)
- Analysis software developed and tested

E040 Analysis

E040 Analysis: ¹³⁶Sb Case

 Previous experiment E040 was performed with a similar setup.

 Estimated background determined using a virtual implant.

 Decay-events with trajectories parallel to beam are rejected as background

E

Counts / 100

E040 Analysis

¹³⁶Sb Case

E040 Analysis

Method can also be applied to other species.

Approved beam time

Parasitic bea	am time
projectile	beam time
¹³⁶ Xe (1 A GeV)	2 days

	Main beam time		
projectile	setting	beam time	
²³⁸ U (1 A GeV)	FRS calibrations	1 day	
²³⁸ U (1 A GeV)	¹²⁸ Pd	5 days	

Total approved beam time					
main beam time ²³⁸ U	6 days				
parasitic beam time ¹³⁶ Xe	2 days				

We request beamtime any time 2011

