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III. GIOS INPUT FILE FORMAT

GIOS uses the method of transfer matrices, all elements of which are described by algebraic
expressions. Each optical element is characterized by one transfer matrix. All transfer matrices
are multiplied resulting in an overall transfer matrix. The elements that can be used are: a field–
free drift distances, magnetic or electrostatic quadrupoles, hexapoles, octupoles or multipoles, a
magnetic or electrostatic sector fields, acceleration regions, solenoids, etc.

GIOS uses either parallelogram–like (mainly for spectrometer designs) or elliptical phase–space
areas (mainly for accelerator or beam line designs). ”Homogeneous” space–charge forces can be
taken into account.

GIOS determines “normalized aberration coefficients” (see section 4.1 and section 4.3 of part
III) which all assume an upright rectangular or an upright elliptical phase–space distribution at
the object and postulate each optical system to be amended by “virtual object lenses” in order
to allow initial oblique phase–space distibutions and still provide an easy to interprete definition
of image aberations.

GIOS provides easy to read graphical presentations of the ion–optical system under consideration
including individual particle trajectories or calculated beam properties like for instance a beam–
envelope for the complete system or parts thereof. At desired z–locations GIOS also determines
contour–line intensity plots for a plane formed by two phase–space coordinates, for instance x,y
or x,a, taking into account all upstream apertures.

The output of GIOS is written onto a file called “GIOSOUT.DAT”. The input of GIOS must be
on a file “GIOSIN.DAT” to which the selected input file is copied automatically. The possibilities
to structure the “GIOSIN.DAT” file are outlined below.

The first line of this file must always be a “title line”.

The last line must read: “END” ;

In between are the GIOS–commands each of which must start on a new line. A GIOS–command
can extend over several 72 character lines and must end with (t;), i.e. a semicolon preceded by
a blank space. All characters behind the (;) symbol are regarded as comment. A line starting
with a (;) symbol is a comment line. Each command must start with two or three characterizing
words each of which is represented by its first letter only. A blank space (t) is the word limiter.

1 General Input Commands

As soon as a GIOS–command is identified by its characterizing words a string of default numbers
is attached to it. The numbers contained in the command then change these default numbers
one by one. In case there are fewer numbers given than contained in the default string, the
leftover default values remain valid.

The first line in GIOSIN.DAT [see title line (section 1.1)] must be present. The second, third
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and/or fourth lines (see sections 1.2, 1.3, 1.4) can be omitted, in which case the default definitions
will be used. If the second, third or fourth command lines appear more than once, the latest
command will override any prior one.
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1.1 The Title Line

The Title line in GIOSIN.DAT is a string of up to 80 characters chosen by the user. This title
should identify the present example and distinguish it from all others. It should be changed for
every calculation performed for instance by a date and a running number so that the file can be
identified later. The given title will be repeated in the final output.

1.2 Choosing Appropriate Lengths Units [LU]

All distances in z–direction are given in longitudinal units (LLU) and all distances in x– and
y–directions in transversal units (TLU). The lengths of the LLU and TLU units (as given in
meters) can be defined by the command:

R(eference) L(ength) <LLU in m> <TLU in m> ;

example: R L 100.0 0.01 ;

default: R L 1.000 1.00 ;

To avoid confusion, it is most advisable to always keep the same LLU and TLU for all calculations
performed in a period of some weeks. If no strong reasons speak against this, it is recommended
to use only the default definitions of LLU and TLU in which case both length units are
measured in meters.

1.3 Selecting a Momentum–Deviation instead of an Energy–Deviation [M]

The chromatic properties of a particle beam are usually described by

1. δK (in GIOS: D) with K/q = (K0/q)0(1 + δK) and

2. δm (in GIOS: G) with m0/q = (m00/q0)(1 + δm)

(see Eqs. (1) of section III). However, by the command:

M(omentum) ;

the definition of δm is changed to δp (in GIOS: P) with p/q = (p0/q0)(1 + δp).

1.4 Selecting the Calculation Order of the Optics Calculation [CO]

The highest order to which calculations will be performed can be chosen by the command:

C(alculation) O(rder) < x–order> < y–order> ;

example: C O 3 3 ;

default: C O 1 1 ;

The first number (1,2 or 3) describes the calculation order for the x–direction and the second
number (1,2 or 3) describes the calculation order for the y–direction. In order to save computer
time and reduce the length of the GIOSOUT.DAT file it is recommended to keep both numbers
as small as possible.
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2 Commands that Describe the Initial Particle Beam

If any of the beam defining commands (see in sections 2 and 3) appear more than once, the last
command overrides all previous ones.

2.1 Choosing a Reference Particle that Can Move along the Optic Axis

2.1.1 Defining the Initial Reference Particle of a system [RP]

The characteristic parameters of the reference particle are defined by the command:

R(eference) P(article) <energy K00 in MeV> ;
<rest mass m00 in mass units> <charge q in charge units e > ;

example: R P 100 4 1 ;

default: R P 1 1 1 ;

One mass unit is 1/12 of one 12C–atom or 931.49433 MeV1. The charge of one electron is (–e),
i.e. 1.602177*10−19Asec2.

In principle GIOS assumes always nonrelativistically fast particles for its calculations, though,
to first order all calculations are performed correctly also for arbitrarily fast particles. However,
for purely magnetic systems, GIOS calculates correctly to all orders if

1. the particle mass mold is arbitrarily increased to a new mass mnew with usually mnew ≥
1000mold while, in order to keep the momentum of the particle constant the energy Kold

must be reduced to Knew = (Kold/mnew)(mold + Kold/1863.003). Here all m are in mass
units amu and all K are in MeV. The potential drops of all ”dipole sheets” or ”acceleration
columns” must be reduced accordingly.

2. all GIOS calculations are performed with a momentum–deviation δp (see section 1.3) in-
stead of an energy deviation δK , so that GIOS calculates and shows corrrect momentum
dispersions and chromaticities. The also calculated and shown mass–dispersions and mass–
chromaticities,howeve, become meaningless since in this case they relate to the arbitrarily
chosen mass number mnew.

2.1.2 Changing the Reference Particle within a system [CR]

The characteristic parameters of the reference particle can be changed at some position z by the
command:

C(hange) R(eference Particle) <energy K00 in MeV> ;
<rest mass m00 in mass units> <charge q in charge units e >

example: C P 100 4 1 ;

1Note that one proton has a rest mass of 1.0073 amu and one electron of 0.00054858 amu.
2In case of very energetic particles their magnetic rigidity – often also called their Bρ–value – is given as χ

in ”Tesla meters” or as χ̃=299.79246χ in ”MeV/c”. In both cases one can determine the corresponding particle

energy for q-times charged particles as K=-931.502m0+
√

(931.502m0)2 + (qχ̃)2.
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If the here demanded new energy K00,new differs from the prior one K00,old it is assumed that
a dipole sheet exists across which the particle energy changes from K00,old to K00,new

3. Besides
the possibility to describe the action of a dipole sheet in a GIOS input file, it should be noted
that in case of an optical system, in which space–charge forces do not vanish, it also is necessary
to newly define the beam current downstream from every assumed dipole sheet. (If the dipole
sheet would accelerate particles from a potential K1/q0 to a potential K2/q0, the beam current
would change from I0 to I0

√
K1/K2.)

2.2 Defining the Initial Phase–Space Distribution of a Beam

2.2.1 Parallelogram–like Phase–Space Areas [PX, PY]

An upright rectangular xa–phase–space area is defined by the command:

P(arallelogram–like) X(–direction)
<source half width x00 in TLU> < tanα00 or a00 > with α00 >
<distance `x to the next angle–limiting aperture in LLU> ;

example: P X 0.001 0.01 1.0 ;

default: P X 0.001 0.01 0.0 ;

Note also that tanα00 = ±dx/`x with 2dx being the diameter of the next angle limiting aperture.

Analogous definitions are necessary for the yb–phase–space area.

example: P Y 0.01 0.002 1.0 ;

default: P Y 0.001 0.01 0.0 ;

Note that usually `x 6= `y and that `x = 0 or `y = 0 are interpreted as `x =∞ or `y =∞.

2.2.2 Elliptical Phase–Space Areas [TX, TY]

An upright elliptical xa–phase–space area is defined by the command:

T(wiss parameter) X(–direction) < αTx >< βTx in TLU> < εx = x00a00 in TLU> ;

example: T X 0.500 0.001 0.000001 ;

default: T X 0.001 0.001 0.000001 ;

Analogous definitions are necessary for the yb–phase–space area.

example: T Y 0.3 0.001 0.0000005 ;

default: T Y 0.001 0.001 0.000001 ;

3In case very energetic particles their magnetic rigidity – often also called their Bρ–value – is given as χ in
”Tesla meters” or as χ̃ = 299.79246χ in ”MeV/c”. In both cases one can determine the corresponding particle

energy of q-times charged particles as K = −931.502m0 +
√

(931.502m0)2 + (qχ̃)2].
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2.2.3 Maximal Energy–, Mass–, or Momentum–Deviations [DP]

For some plot–commands and for the P(RINT) N(UMERICAL . . .)–command one should define
how large δK , δm or δp are assumed to be. The corresponding command is:

D(eviation) P(arameter)< δm or δp > < δK in units> ;

example: D P 0.02 0.01 ;

default: D P 0 0 ;

If δm, δp or δk are given as 0.01 then they are all 1%

2.3 Taking Space–Charge Forces into Account [BC, BN]

Space–charge calculations are initiated by the commands:

B(eam) C(urrent) < I in Ampere>

B(eam) N(ew current) < I in Ampere>

which define the beam current Ii at zi. In case of bunching Ii+1 is larger than Ii and in case
of debunching Ii+1 is smaller than Ii. In between, the actual current I is linearly interpolated.
If not specified otherwise at the end of the optical system, it is assumed as default that a
BN< I >–command is included with < I > being the value defined in the BC< I >–command
or the last BN< I >–command.

3 Description of the Optical System under Consideration

3.1 Field–Free Regions [DL]

The simplest optical element is a field–free region defined by the command:

D(rift) L(ength) <length L in LLU> ;

example: D L 1.0 ;

3.2 Rotationally Symmetric Lenses

3.2.1 A Thin Lens [TL]

A simple device is also a thin lens of focal length fx and fy in x– and y–directions. This thin
lens is defined by the command:

T(hin) L(ens) < f−1x in LLU−1 > < f−1y in LLU−1 > <identifier> ;

example: T L 1.0 1.0 1 ;

The <identifier> here has one of the following two meanings:

• 1: an electrostatic thin lens (in which case the lens chromaticity relates to an energy–to–
charge deviation)

• 2: a magnetic thin lens (in which case the lens chromaticity relates to a momentum–to–
charge deviation)
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3.2.2 A Z–Pinch–Plasma–Lens [ZP]

A Z–Pinch Plasma–Lens has equal focusing forces in both the x– and the y–directions.

Z(pinch) P(lasma–lens) <effective length ` of lens in LLU>
< BQ in T at pole tip> <aperture radius G0 in TLU> ;

example: Z P 0.2 1.0 0.02 ;

3.2.3 An Accelerating Column [AC]

An accelerating column here is assumed to feature an in z–direction accelerating electrostatic
field of length ` which will change the particle energy4. and thus also the angles of inclination
of particle trajectories.

A(ccelerating) C(olumn) <effective length ` of column in LLU>
< E in kV/mm> <aperture radius G0 in TLU> ;

example: A C 0.5 1.0 0.05 ;

In case of an optical system, in which space–charge forces do not vanish, it also is necessary to
newly define the beam current downstream from the accelerating column. (If the accelerating
column under consideration accelerates particles from a potential K1/q0 to a potential K2/q0,
the beam current would change from I0 to I0

√
K1/K2.)

3.2.4 Fringing Fields for an Accelerating Column [FF]

To third order, fringing field integrals for accelerating columns are effective only for its focal
length not its third–order image aberrations. This fringing field is defined by the command:

F(ringing) F(ield) <table#>

< I1 = (I1B) = G−20 [
∫∫

(E/E0)
2dzdz − I4AzbG0 − z2b/2] >

< I2 = (I4A) = G−10 [
∫

(E/E0)
2dz − zb] >

< I3 = (I5A) = G0
∫
(E′/E0)

2dz >
< I4 = (−I6A) = −

∫
z(E′/E0)

2dz >

< I5 = (I9A) = G−20 {
∫
[(E/E0)

2
∫

(E/E0)dz]dz − z2b/2} > ;
< I6 = (−I10A) = −

∫
[(E′/E0)

2
∫

(E/E0)dz]dz >

example: F F 0 0.209 −0.0768 0.0552 −0.33 ;

default: F F 1 ; .

with E0 = Ez(zb) being the accelerating field in the main field region as well as E = Ez(z) and
E′ = ∂Ez(z)/∂z denoting this field strength and its z–derivative at an arbitrary position along
the optic axis.

For <table#>=0 the numerical values of all fringing–field integrals must be listed.
For <table#>6=0 the fringing–field integrals are taken from GIOS FF.DAT. Note that

• z is the coordinate along the optic axis and that

4In case very energetic particles their magnetic rigidity – often also called their Bρ–value – is given as χ in
”Tesla meters” or as χ̃ = 299.79246χ in ”MeV/c”. In both cases one can determine the corresponding particle

energy of q-times charged particles as K = −931.502m0 +
√

(931.502m0)2 + (qχ̃)2]
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• G0 is the aperture radius of the last opening in the accelerating column.

• All integrals must be taken from za outside to zb inside the main–field regions.

Note here that the fringing–field integrals are only small corrections, so that usually approximate
values of I1, I2, I3, I4 I5, I6, are satisfactory and that reasonably good results can be obtained
if a set of standard fringing–field integrals is used, determined from a realistic fringing–field
distribution, i.e. a field distribution in which Laplace’s equations are valid everywhere. One such
realistic fringing–field distribution is that for a relatively long accelerating column of aperture
2G0 whose fringing field is not modified by any other electrode. The fringing–field integrals
that correspond to such a situation are listed in the file GIOSFF.DAT under #1. In case
one has more information about fringing–field distributions that really exist one can obtain the
corresponding fringing–field integrals from GIOS also (see section XXX). The use of these new,
more accurate fringing–field integrals, however, most probably will modify the earlier results
only very slightly.

Note that a fringing field can only be situated between a field–free region and an acceleration
column.

3.2.5 A Magnetic Solenoid Lens [SL]

A magnetic solenoid here is assumed to feature a longitudinal magnetic flux density in z–
direction.

S(olenoid) L(ens) <effective length ` of solenoid in LLU>
< B in Tesla> <aperture radius G0 in TLU> ;

example: M S 0.5 1.0 0.05 ;

3.2.6 Fringing Fields for a Solenoid [FF]

To third order, fringing field integrals for a solenoid are effective only for its focal length not its
third–order image aberrations. This fringing field is defined by the command:

F(ringing) F(ield) <table#>

< I1 = (I1B) = G−20 [
∫∫

(B/B0)
2dzdz − I4AzbG0 − z2b/2] >

< I2 = (I4A) = G−10 [
∫

(B/B0)
2dz − zb] >

< I3 = (I5A) = G0
∫
(B′/B0)

2dz >
< I4 = (−I6A) = −

∫
z(B′/B0)

2dz >

< I5 = (I9A) = g−20 {
∫
[(B/B0)

2
∫

(B/B0)dz]dz − z2b/2} > ;
< I6 = (−I10A) = −

∫
[(B′/B0)

2
∫

(B/B0)dz]dz >

example: F F 0 0.209 −0.0768 0.0552 −0.33 ;

default: F F 1 ; .

with B0 = Bz(zb) being the solenoidal flux density in the magnet coil as well as B = Bz(z) and
B′ = ∂Bz(z)/∂z denoting this flux density and its z–derivative at an arbitrary position along
the optic axis.

For <table#>=0 the numerical values of all fringing–field integrals must be listed.
For <table#>6=0 the fringing–field integrals are taken from GIOS FF.DAT. Note that
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• z is the coordinate along the optic axis and that

• G0 is the aperture radius of the solenoid.

• All integrals must be taken from za outside to zb inside the main–field region.

Note here that the fringing–field integrals are only small corrections, so that usually approximate
values of I1, I2, I3, I4 I5, I6, are satisfactory and that reasonably good results can be obtained
if a set of standard fringing–field integrals is used, determined from a realistic fringing–field
distribution, i.e. a field distribution in which Laplace’s equations are valid everywhere. One such
realistic fringing–field distribution is that for a relatively long solenoid of aperture 2G0 whose
fringing field is not modified by any other ferromagnetic parts. The fringing–field integrals
that correspond to such a situation are listed in the file GIOSFF.DAT under #1. In case one
has more information about a fringing–field distributions that really exists one can obtain the
corresponding fringing–field integrals from GIOS also (see section XXX). The use of these new,
more accurate fringing–field integrals, however, most probably will modify the earlier results
only very slightly.

Note that a fringing field can only be situated between a field–free region and an acceleration
column.

3.3 Multipoles

3.3.1 A Magnetic Multipole [MM]

A general magnetic multipole, i.e. a superimposed quadrupole, hexapole and octopole, is defined
by the command

M(agnetic) M(ultipole) <effective length ` of multipole in LLU>
< BQ in T at pole tip> < BH in T at pole tip> < BO in T at pole tip>
<aperture radius G0 in TLU> ;

example: M M 0.2 1.0 0 0 0.2 ;

BQ, BH and BO here are the quadrupole–, hexapole– and octopole–components of the magnetic
flux density. For positive values of BQ, BH and BO positively charged ions positioned at positive
x–values are driven towards the optic axis.

This multipole–command is also applicable for a pure quadrupole, hexapole or octopole. How-
ever, to save computer time, it is advisable to use in such cases the following commands:

3.3.2 A Magnetic Quadrupole [MQ]

A pure magnetic quadrupole is defined by the command:

M(agnetic) Q(uadrupole) <effective length ` of quadrupole in LLU>
< BQ in T at pole tip> <aperture radius G0 in TLU> ;

example: M Q 0.2 1.0 0.02 ;
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3.3.3 A Magnetic Hexapole [MH]

A pure magnetic hexapole is defined by the command:

M(agnetic) H(exapole) <effective length ` of hexapole in LLU>
< BH in T at pole tip> <aperture radius G0 in TLU> ;

example: M H 0.2 0.5 0.02 ;

3.3.4 A Magnetic Octopole [MO]

A pure magnetic octopole is defined by the command:

M(agnetic) O(ctopole) <effective length ` of octopole in LLU>
< BO in T at pole tip> <aperture radius G0 in TLU> ;

example: M O 0.2 0.6 0.02 ;

3.3.5 An Electrostatic Multipole [EM]

An electrostatic multipole is defined by the command:

E(lectrostatic) M(ultipole) <effective length ` of multipole in LLU>
< VQ in kV at electrode> < VH in kV at electrode> < VO in kV at electrode>
<aperture radius G0 in TLU> ;

example: E M 0.1 1.0 0 0 0.03 ;

VQ, VH and VO here are the quadrupole–, hexapole– and octopole–components of the electrode
potential. For positive values of VQ, VH , VO positively charged ions positioned at positive x–
values are driven towards the optic axis.

Analogously to the magnetic case the multipole–command is also possible for a pure quadrupole,
hexapole or octopole. However, to save computer time it is advisable to use in such cases the
following commands:

3.3.6 An Electrostatic Quadrupole [EQ]

A pure electrostatic quadrupole is defined by the command:

E(lectrostatic) Q(uadrupole) <effective length ` of quadrupole in LLU>
< VQ in kV at electrode> <aperture radius G0 in TLU> ;

example: E Q 0.1 1.0 0.03 ;

3.3.7 An Electrostatic Hexapole [EH]

A pure electrostatic hexapole is defined by the command:

E(lectrostatic) H(exapole) <effective length ` of hexapole in LLU>
< VH in kV at electrode> <aperture radius G0 in TLU> ;

example: E H 0.2 0.3 0.03 ; .
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3.3.8 An Electrostatic Octopole [EO]

A pure electrostatic octopole is defined by the command:

E(lectrostatic) O(ctopole) <effective length ` of octopole in LLU>
< VO in kV at electrode> <aperture radius G0 in TLU> ;

example: E O 0.2 0.8 0.03 ; .

3.3.9 Fringing Fields for a Magnetic or Electrostatic Multipole, Quadrupole or
Hexapole [FF]

To third order, fringing fields for multipoles are effective only for their quadrupole– or hexapole–
component. This fringing field is defined by the command:

F(ringing) F(ield) <table#>

< I1 = (I1A) = G−20 [
∫∫

(g/g0)dzdz − z2b/2] >

< I2 = (I2A) = G−30 {
∫
[z
∫
(g/g0)dz]dz − z3b/3} >

< I3 = (I3A) = G−30 {
∫

[
∫

(g/g0)dz]
2dz − z3b/3} >

< I4 = (I4A) = G−10 [
∫

(g/g0)
2dz − zb] >

< I5 = (I1B) = G−20 [
∫∫

(g/g0)
2dzdz − I4AzbG0 − z2b/2] >

< I6 = (I5A) = G0
∫
(g′/g0)

2dz >
< I7 = (I6A) =

∫
z(g′/g0)

2dz >
< I8 = (I8A) =

∫∫
(g′/g0)

2dzdz − I5Azb/G0 >

< I9 = (I11A) = G−40 {
∫
[
∫

(g/g0)dz][
∫∫

(g/g0)dzdz]dz − I1Az2bG2
0/2− z4b/8} >

< I10 = (I11B) = G−40 {
∫
z[
∫

(g/g0)dz]
2dz − z4b/4} >

< I11 = (I12A) =>
< I12 = (I12B) => ;

example: F F 0 0.209 −0.0768 0.0552 −0.33 ;

default: F F 1 ; .

with g0 = g(zb) being the radial field gradient in the main field region as well as g = g(z) and
g′ = ∂g(z)/∂z denoting this field gradient and its z–derivative at an arbitrary position along the
optic axis.

For <table#>=0 the numerical values of all fringing–field integrals must be listed.
For <table#>6=0 the fringing–field integrals are taken from GIOS FF.DAT. Note that

• z is the coordinate along the optic axis and that

• G0 is the aperture radius of the multipole.

• All integrals must be taken from za outside to zb inside the main–field regions.

Note here that the fringing–field integrals are only small corrections, so that usually approximate
values of I1, I2, I3, I4 I5, I6, I7, I8 I9, I10, I11, I12 are satisfactory and that reasonably good
results can be obtained if a set of standard fringing–field integrals is used, determined from
a realistic fringing–field distribution, i.e. a field distribution in which Laplace’s equations are
valid everywhere. However, before the system is finally built, one should perform calculations
with fringing–field distributions that are as accurate as possible, obtained from measurements
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or precise 2D or better–calculations. The fringing–field integrals from any such fringing–field
distribution can be obtained from GIOS also (see section XXX). The use of these new, more
accurate fringing–field integrals will modify the earlier results slightly to first– and second–order.
In most any case, however, these modifications can be counterbalanced by slightly varying the
geometry or some quadrupole and in critical cases some hexapole parameters in the optical
system under consideration.

Note that a fringing field can only be situated between a field–free region and a multipole or
quadrupole or hexapole.

3.4 Thin Lens Quadrupole Doublets [MD, ED]

A magnetic or electric doublet is approximated by thin lenses. It is possible to choose three
focusing systems:

• a point–to–parallel focusing system

• a stigmatic focusing system

• an astigmatic focusing system.

The doublet must be defined in a block (see section 7.1) with the B U and the B E commands.
The first quadrupole is defocusing in x–direction if the ’sign’ of the block name is negative.
There are four such doublet commands

M(agnetic) D(oublet) <block name> <identifier>;
M(agnetic) D(oublet) <-block name> <identifier>;

E(lectric) D(oublet) <block name> <identifier>;
E(lectric) D(oublet) <-block name> <identifier>;

example: B U PART ;
D L 0.4 ;
E Q 0.2 0.05 ;
D L 0.4 ;
E Q 0.2 -0.05 ;
D L 0.4 ;

B E ;
E D -PART S ;

There are three possible choices for the <identifier>

• P: Point–to–parallel focusing system

• S: Stigmatic focusing system

• A: Astigmatic focusing system
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3.5 Sector Fields

3.5.1 A Magnetic Sector Field [MS]

A magnetic sector field is defined by the command:

M(agnetic) S(ector field)

<radius of deflection ρB0 in LLU> <angle of deflection φ0 in degrees>

<half air gap G0 in TLU> < nB1 > < nB2 > < nB3 > ;

example: M S 1.0 90 0.05 0.51 ;

default: M S 1.0 90 0.01 0 0 0 ;

The magnetic flux density in this sector field equals

B(x, y = 0) = B0[1− nB1

(
x

ρB0

)
− nB2

(
x

ρB0

)2

− nB3

(
x

ρB0

)3

− . . .] .

For first– and second–order calculations nB1 is defined for −1 < nB1 < 1. For third–order
calculations nB1 is defined only for 0 < nB1 < 1.

3.5.2 Fringing Fields for a Magnetic Sector Field [FF]

Fringing fields for magnetic sector fields are defined by the command:

F(ringing) F(ield) <table# > <entrance or exit angle ε in degrees>
<relative curvature ρB0/R of effective field boundary>

< I1 = (I1A) = G−20 [
∫∫

(B/B0)dζdζ − ζ2b /2] >

< I2 = (I1B) = G−20 [
∫∫

(B/B0)
2dζdζ − I4AζbG0 − ζ2b /2] >

< I3 = (I4A) = G−10 [
∫

(B/B0)
2dζ − ζb] >

< I4 = (I4B) = G−10 [
∫

(B/B0)
3dζ − ζb] >

< I5 = (I5A) = G0
∫
(B/B0)

2dζ >
< I6 = (I6A) =

∫
ζ(B/B0)

2dζ >

< I7 = (I9A) = G−20 {
∫

[(B/B0)
2
∫

(B/B0)dζ]dζ − ζ2b /2} >
< I8 = (I10A) =

∫
[(B′/B0)

2
∫
(B/B0)dζ]dζ >

< I9 = (I2A) = G−30 {
∫
[ζ
∫
(B/B0)dζ]dζ − ζ3b /3} >

< I10 = (I3A) = G−30 {
∫

[
∫

(B/B0)dζ]2dζ − ζ3b /3} >
< I11 = (I2B) = G−30 [

∫
(B/B0)

2ζ2dζ − ζ3b /3] > ;

example: F F 0 10.0 1.0 0.4853 −0.5145 −0.3027 ;

default: F F 1 0 0 ; .

with B0 = Bη(ζb) being the η–component of the magnetic flux density in the main field region
as well as B = Bη(ζ) and B′ = ∂Bη(ζ)/∂ζ denoting the η–component of this flux density and
its ζ–derivative at an arbitrary position along the optic axis.

In case of <table#>=0 the numerical values of all three fringing–field integrals must be listed.
In case of <table#>6=0 the fringing–field integrals are taken from GIOS FF.DAT. Note that

• ζ is a coordinate perpendicular to the effective field boundary,

• G0 is the half magnet air gap,
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• the integral I5 must be taken from ζa to the effective field boundary, i.e. to ζ =0,

• the integrals I1 and I4 must be taken from ζa outside to ζb inside the main–field region.

Note here that the fringing–field integrals are only small corrections so that usually approximate
values for I1, I4, I5 are satisfactory and that reasonably good results can be obtained if a set of
standard fringing–field integrals is used, determined from a realistic fringing–field distribution,
i.e. a field distribution in which Laplace’s equations are valid everywhere. However, before the
system is finally built, one should perform calculations with fringing–field distributions that are
as accurate as possible obtained from measurements or precise 2D or better 3D calculations. This
will then modify the results slightly to first– and–second order where these modifications usually
can be counterbalanced by varying the geometry or some quadrupole and hexapole parameters
slightly.

Note that ε (see Fig. 4.8 in Ref. 7) is positive if the normal to the field boundary is further
away from the center of curvature of the optic axis than the incoming or outgoing beam. Note
further, that ρB0/R (see Fig. 8.6 in Ref. 7) is positive for a convex field boundary and negative
for a concave one. Note also that a fringing field can only be situated between a field–free region
and a magnetic sector.

3.5.3 A Magnetic Rectangle [MR]

A magnetic rectangle is defined by the command:

M(agnetic) R(ectangle) <length ` = ρB0φ0 in LLU>
<magnetic flux density B in T> <half air gap G0 in TLU>
<tilt angle ε in degrees> < nB1 > < nB2 > < nB3 > ;

example: M R 1.0 0.58 0.05 ;

default M R 1.0 0.58 0.01 10 0 0 0 ;

In GIOS the MR–command invokes a MS–command for which the entrance and exit angles
of a magnetic sector field, are both chosen to be ε1 = φ0/2 − ε and ε2 = φ0/2 + ε. Usually,
the magnetic flux density in a magnetic rectangle is homogeneous (nB1 = nB2 = nB3 = 0).
However, if nB1, nB2 and/or nB3 are non zero, a radially inhomogeneous magnetic sector field
is assumed as defined above in section 3.4.1.

3.5.4 Fringing Fields for a Magnetic Rectangle [FF]

Fringing fields for magnetic rectangles are defined analogously to those for magnetic sector
fields including the curvatures of the field boundaries. However, the entrance/exit angle must
be omitted since the (ε) are defined in the MR–command.

3.5.5 An Electrostatic Sector Field [ES]

An electrostatic sector field is defined by the command:
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E(lectrostatic) S(ector–field)
<radius of deflection ρE0 in LLU> <angle of deflection φ0 in degrees>
<half electrode gap G0 in TLU> < nE1 > < nE2 > < nE3 > ;

example: E S 1.0 90 0.03 1 ;

default: E S 1.0 90 0.01 0 0 0 ;

where the toroidicity of the mid–equipotential surface of the sector field is determined by RE
(see Fig. 4.17 in Ref. 7) with

ρE0

RE
= nE1 + nE2

(
x

ρE0

)
+
nE3

2

(
x

ρE0

)2

+ . . .

For first– and second–order calculations nE1 is defined for −2 < nE1 < 2. For third–order
calculations nE1 is defined only for 0 < nE1 < 2. Special cases are:

• cylindrical electrodes: nE1 = nE2 = nE3 = 0

• spherical concentric electrodes: nE1 = −nE2 = nE3 = 1

• toroidal electrodes, i.e. electrodes which intersect the xz– as well as the yz–planes in circles:
nE1 6= nE2 6= nE3 6= 0

3.5.6 Fringing Fields for an Electrostatic Sector Field [FF]

Fringing–field integrals for electrostatic sector fields (see # 19 in the FF-integral table) are
defined by the command:

F(ringing) F(ield) <table# > <entrance or exit angle ε >
<relative curvature ρE0/R of effective field boundary>

< I1 = (I1a) = G−20 [
∫∫

(E/E0)dζdζ − ζ2b /2] >

< I2 = (I1b) = G−20 [
∫∫

(E/E0)
2dζdζ − ζ2b /2− I4aζbG0] >

< I3 = (I4a) = G−10 [
∫

(E/E0)
2dζ − ζb] >

< I4 = (I4b) = G−10 [
∫

(E/E0)
3dζ − ζb] >

< I5 = (I5A) = G0
∫

(E′/E0)
2dζ >

< I6 = (I6A) =
∫
ζ(E′/E0)

2dζ >

< I7 = (I3A) = G−30 {
∫
[
∫
(E/E0)]

2dζ − ζ3b /3} >
< I8 = (I3B) = G−30 {

∫
[
∫
(E/E0)

2dζ][
∫
(E/E0)dζ]dζ − I4Aζ2bG0/2− ζ3b /3} > ;

example: F F 0 0 0.09819 0.1217 −0.2404 −0.3781 0.72 −0.6924
0.03167 0.06924 ;

example: F F 1 0 0 ;

with E0 = Eξ(ζb) being the ξ–component of the electrostatic field strength in the main field re-
gion as well as Eξ = Eξ(ζ) and E′ = ∂Eξ(ζ)/∂ζ denoting the ξ–component of this field strength
and its ζ–derivative at an arbitrary position along the optic axis. For the entrance angle ε only
“0” is allowed up to now.

In case of <table#>=0 the numerical values of all fringing–field integrals must be listed explic-
itly. In case of <table#>6=0 the fringing–field integrals are taken from GIOS FF.DAT. Note
that
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• ζ is a coordinate perpendicular to the effective field boundary and that

• G0 is the half electrode gap.

• All integrals must be taken from ζa outside to ζb inside the main–field region.

Note here that the fringing–field integrals are only small corrections so that usually approximate
results for I1a, I1b, I4a, I4b, I5, I6, I7, I8 are satisfactory and reasonably good results can be
obtained if a set of standard fringing–field integrals is used, determined from a realistic fringing–
field distribution, i.e. a field distribution in which Laplace’s equations are valid everywhere.
However, before the system is finally built, one should perform calculations with fringing–field
distributions that are as accurate as possible obtained from measurements or precise 2D– or
better 3D–calculations. This will then modify the results slightly to first– and second–order
where these modifications usually can be counterbalanced by varying the geometry or some
quadrupole and hexapole parameters slightly.

Note that ρB0/R is positive (or negative) for a convex (or a concave) field boundary. Note also
that a fringing field can only be situated between a field–free region and a sector field.

3.6 A Wien Filter [WF]

A Wienfilter is defined by the command

W(ien) F(ilter) <length ` in LLU>
<radius of deflection ρ of optic axis in LLU> <magnetic flux density in T>
<half magnet air gap GB0 in TLU> <half electrode distance GE0 in TLU>
<radius RB of magnetic flux lines in TLU>
<radius RE of mid–equipotential surface in TLU>
<variation dRB/dx of radius of magnetic flux lines>
<variation dRE/dx of radius of mid–equipotential surface>
<height h≤ 2GB0 of electrodes in TLU> <identifier1> <identifier2> ;

example: W F .3 0 .5 .01 .01 0 0 0 0 . 008 0 1 ;

If the <identifier 1> is 0 the height of the electrodes is assumed to be infinite. There are two
choices for the <identifier 2>

• 0: the magnetic and the electrostatic fringing fields coincide

• 1: the electrostatic fringing field is inside a magnetic sector field,
i.e. the electrodes end within the magnet.

3.7 Changing the Direction of Deflection [CB]

GIOS assumes that all sector fields deflect the particle beam in the negative x–direction, i.e. to
the right, looking downstream. However, a change of the direction of deflection can always be
invoked by the command:

C(hange) B(ending direction) ;

example: C B ;
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4 The Selection of GIOS Output

The GIOS output always starts by listing the corresponding input file. A message: “error card”
in this listing indicates that something was wrong in the preceding line of the input file. Since
GIOS has a finite capacity to store input–file entries (< 600), apertures (< 10), algebraic
expressions (< 20), etc., some error messages may refer to storage limitations being exceeded,
rather than disclose a fault in the format or syntax of the offending line.

The second portion of the output contains a compilation of the source– and particle–definitions
and a detailed description of the optical system under consideration. In front and in back of each
drift distance the floor coordinates U, V are listed together with the angle of the beam direction
W . Note that the first sector field is always assumed to deflect to the right, i.e. towards negative
V –values.

4.1 Changing Floor Coordinates [CF]

Usually the floor coordinates are U=V=W=0 initially. However, there is the possibility to
change this presetting5 by the command:

C(hange) F(loor-coordinates) <U in LLU> <V in LLU> <W in degrees> ;

example: F 0 5 -30 ;

At any position zi, corresponding to the position zi in the input file, the following printouts can
be initiated which describe the transfer matrix of the system from z0 to zi or beam properties
at zi.

4.2 Printout of Transfer Matrices from z0 to zi [SC, NC]

For the printout of transfer matrices symplektic or nonsymplektic coordinates can be chosen
in GIOS. If a nonsymplektic coordinate system is chosen, the beam inclinations relative to the
optic axis are described by:

A = px/pz = tan(α) B = py/pz = tan(β)

where px, py, pz are the x, y, z components of the momentum of the particle under considerations.
If a symplektic coordinate system is chosen, the beam inclinations are described by:

A = px/p0 = sin(α)
√

(1+δK)(1+δm)
1+cos2 α tan2 β

B = py/p0 = sin(β)
√

(1+δK)(1+δm)
1+cos2 β tan2 α

where p0 is the momentum of the reference particle.

A symplektic coordinate system for the downstream system is chosen by the command

S(ymplektic) C(oordinate system) ;

while a nonsymplektic coordinate system for the downstream system is chosen by the command

N(onsymplektic) C(oordinate system) ;

As a default a nonsymplektic coordinate system is assumed.

5The ”C F” command changes the initial U,V,W coordinates in the GIOS system printout as well as in the
BEAM CUR.MTA file and the corresponding system graph.
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4.2.1 Printout of one System Transfer Matrix [PM]

A transfer matrix that connects the beam at z0 and zi is printed by the command:

P(rint) M(atrix) ;

example: P M ;

Note that the position zi is described in LLU and the time the reference particle needed to
arrive at this zi is described in TU=µsec LLU/m. Thus TU is given in µsec if LLU is in meters.
Note further that one overall tranfer matrix is automatically printed at the end of each GIOS
calculation; therefore, a PM–command is needed only when intermediate results are desired.

4.2.2 Printout of the Magnitudes of Aberrations [PN]

The matrix elements (ri|xka`ymbnδoKδpm) multiplied by xk00a
`
00y

m
00b

n
00δ

o
K0δ

p
m0, are determined and

listed in the same fashion as transfer matrices by the command:

P(rint) N(umerical trajectory deviations) <identifier> ;

example: P N ;

example: P N E ;

There are three possible choices for the <identifier> (see ref. 19):

• P: parallelogram–like phase–space areas in (x, a) and (y, b) are assumed (default);

• E: elliptical phase–space areas in (x, a) and (y, b) are assumed;

• S: a “spherical” phase–space volume in (x, a, y, b) is assumed.

The PN–command provides a simple way to judge the relative importance of aberrations.

4.2.3 Printout of Couple Coefficients [PCC]

The derivatives of the image aberrations at the end of the optical system with respect to a
ficticious multipole element at z = zi are calculated and listed in the same fashion as transfer
matrices at z = zi by the command:

P(rint) C(ouple) C(oefficients) ;

example: P C C ;

4.2.4 Printout of the Positions of the Next Images, Pupils and Waists [PI]

The distances from zi to the next image, waist and pupil are calculated by the command:

P(rint) I(mages waists pupils) ;

example: P I ;
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4.2.5 Printout of Beam Diameters, Twiss Parameters and Phase Shifts [PE]

The beam envelopes and Twiss parameters at z = zi as well as the phase shift ψi between z0
and zi are printed or both parallelogram–like for elliptical phase–space areas by the command:

P(rint) E(envelope) ;

example: P E ;

4.3 A Printer Plot of the Focal Planes [PF]

A printer plot of the shape of the focal planes are produced by the command:

P(lot) F(ocal Plane) <identifier>
<shown maximal x–width in TLU> <shown maximal z–length in LLU> ;

example: P F E ;

There are two possible choices for the <identifier>:

• M: the angle– and energy–image curves are shown for ions of different masses;

• E: the angle– and mass–image curves are shown for ions of different energies.

If the maximal x– and z–widths are not given explicitly, they are chosen as default values such
that the trajectories are included in the shown printer plot. For the calculations the energy–
deviation δK and the mass–deviation δm are used as they were defined by the DP–command.

4.4 Plots of Beam Envelopes

4.4.1 Printer Plot of the Beam Envelope [PB]

A printer plot of the optical system under consideration is produced showing the calculated
first–order envelope of the real beam (indicated is also a beam formed by trajectories that start
from a point source under angles A and B) by the command:

P(lot) B(eam) <identifier> <number of printer lines>
<shown maximal x–width in TLU> <shown maximal y–width in TLU>

example: P B 100 0.15 0.15 ;

example: P B E 100 0.05 0.05 ;

default: P B P 100 0.10 0.10 ;

There are two possible choices for the <identifier>:

• P: representing a parallelogram–like phase–space area;

• E: representing an elliptical phase–space area.

If the <identifier> is left off completely, GIOS assumes: <identifier>=P, if PX, PY were used
at the beginning of the GIOS input or <identifier>=E, if TX, TY were used.
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4.4.2 Graphic Output of System and Trajectories [PB]

A graphic output calculated to second– and third–order is obtained by a command very similar
to the printer plot of 4.4.1 by:

P(LOT) B(EAM) <identifier> <length of plot in cm>
<shown maximal x–width in TLU> <shown maximal y–width in TLU>
<width of plot in cm> <N: number of plots> <plot resolution in z direction in cm>
< x0: number of trajectory starting points in the x–coordinate>
< a0: number of trajectory starting points in the a–coordinate>
< g0: number of trajectory starting points in the g–coordinate>
< d0: number of trajectory starting points in the d–coordinate>
< y0: number of trajectory starting points in the y–coordinate>
< b0: number of trajectory starting points in the b–coordinate> ;

example: P B 30 0.1 0.1 2 2 0.02 2 2 1 3 2 2 ;

example: P B E 40 0.1 0.1 2.5 2 0.03 2 2 1 3 2 2 ;

There are two possible choices for the <identifier>:

• P: representing a parallelogram–like phase–space area;

• E: representing an elliptical phase–space area.

If the <identifier> is left off completely, <identifier>=P, if PX, PY were used at the beginning
of the GIOS input or <identifier>=E, if TX, TY were used. The calculation is performed to
the order given in the “Calculation Order”–command.

When the number of graphs is set to N = 1, only the horizontal and vertical plots for the system
with straightened optic axes are generated: ”beam str.mta”. For N = 2 a realistic top–view
with correct floor coordinates is shown in addition: ”beam cur.mta”, as well as a graphic
representation of the field strength of indifferent elements along the optic axis: ”fields.mta”.
The total number of starting points of trajectories is distributed equally spaced within the
initially defined phase–space areas x0, a0 or y0, b0 or within the range of masses (g0) and energies
(d0) as defined in the “Deviation Parameter”–command. Note that the ”length of a plot” can
safely be ignored but must be included in the command. This number must be within 20 and
70. Note also that the total number of trajectories increases rapidly according to

nx = x0 ∗ a0 ∗ g0 ∗ d0 and ny = y0 ∗ b0 ∗ g0 ∗ d0 .

4.4.3 Graphic Output of Values of Arithmetic Functions [DF]

The value F(z) of a defined arithmetic expression is shown along the optic axis: ”func**.mta”.

D(raw) F(unctions) <arithmetic expression>
<shown maximal x–width in TLU> <shown maximal z–width in LLU>

example: D F =R ;
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4.4.4 Beam Plot of a Segment of the Optical System [PS]

To plot only a portion of an ion–optical system starting at zi, one must use the command:

P(lot) S(egment) <identifier> <length of plot in cm>
<shown maximal x–width in TLU> <shown maximal y–width in TLU>
<width of plot in cm> <N: number of plots> <plot resolution in z direction in cm>
< x0: number of trajectory starting points in the x–coordinate>
< a0: number of trajectory starting points in the a–coordinate>
< g0: number of trajectory starting points in the g–coordinate>
< d0: number of trajectory starting points in the d–coordinate>
< y0: number of trajectory starting points in the y–coordinate>
< b0: number of trajectory starting points in the b–coordinate> ;

example: P S 30 0.1 0.1 2 2 0.02 2 2 1 3 2 2 ;

example: P S E 40 0.1 0.1 2.5 2 0.03 2 2 1 3 2 2 ;

The parameters are the same as for the “Plot Beam”–commands of section 4.4.1 and 4.4.2. The
plot terminates at the position zi in the input file with the command:

P(lot) S(egment end) ;

4.5 Plots of Intensity Distributions

4.5.1 Printer Plots of Intensity Distributions in Phase–Space [PP]

A printer plot of an intensity distribution in phase–space is initiated at zi by the command:

P(lot) P(hase space) (f,g) <identifier> <total number of particles>
<f–dimension of plot> <g–dimension of plot> <total number of mass values> ;

example: R = ((@, X) ↑ 2 + (@, Y ) ↑ 2 ) ↑ 0.5 );
P P (R,D) P 1000 0.025 0.050 1 ;

The following choices are possible for either f or g in (f,g):

X = final X–position x = initial X–position
A = final A–angle a = initial A–angle
G = mass (quantized) g = mass (quantized)
D = energy (quantized) d = energy (continuous)
Y = final Y –position y = initial Y –position
B = final B–angle b = initial B–angle
T = final time t = final time
N = ray counter (how many rays) n = count in window

In addition, any other letter can be used if it has been defined upstream as an algebraic variable.
The special expression (@, k) may be used to substitute individual trajectory coordinates (i.e.;
k = X,A,G,D, Y,B, T ) into arithmetic expressions (see section 5.1) before plotting.

The total number of mass values are distributed equally over the mass widths defined in the
“D(eviation) P(arameter)”–command.
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There are three possible choices for the <identifier>:

• P: the initial distributions in f and g are chosen independently;

• E: only those (x, a) or (y, b) combinations are chosen which lie inside (x00,a00) or (y00,b00)
ellipses;

• S: only those (x, a), (y, b) or (x, y) combinations are chosen which lie inside (x00,a00),
(y00,b00) or (x00, y00) ellipses.

All parameters following (f,g) can be omitted. As default the <identifier> equals P and GIOS
assumes 1000 particles and one mass; the size of the plot is chosen automatically by the program
according to a first–order calculation.

4.5.2 Graphic Output of Intensity Distributions in Phase–Space [PQ, PP]

A graphic output ”pspace**.mta” similar as the printer plot produced by the “P(lot) P(hase space)”–
command of section 4.5.1 is obtained by inserting the following command directly before the
“P(lot) P(hase space)”–command:

P(lot) Q(uality)
<contour line of a times the maximum intensity>
<contour line of b times the maximum intensity>
<contour line of c times the maximum intensity>
<contour line of d times the maximum intensity>
<contour line of e times the maximum intensity>
<contour line of f times the maximum intensity> ;

example: P Q .1 .3 .5 .7 .9 ;
P P (x, y) 10000 .02 .10 3 ;

where for each number a, b, c, d, e, f a contour line is shown. An entry < 0.01 will default to a
contour line at 0.05 and an entry > 0.99 will default to 0.95.

4.5.3 Defining Aperture Slits [AS]

In connection with the “P(lot) P(hase space)”–command in section 4.5.1 and the graphics
“P(lot) B(eam)”–command in sections 4.4.1 and 4.4.2, one can introduce up to 10 commands
to simulate the effects of aperture slits positioned upstream at any zi by the command:

A(perture) S(lit) <identifier>
< ±dx size in x–direction in TLU> < ±dy size in y–direction in TLU> ;

example: A S S 0.01 0.01 ;

There are two possible choices for the <identifier>:

• P: a rectangular aperture is assumed of cross section 2dx2dy;

• E: an elliptical aperture is assumed of cross section πdxdy;
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4.5.4 Defining Current Densities in the Beam [B]

In connection with the “P(lot) P(hase space)”–command and the “P(lot) B(eam)”–command,
one can define an initial particle–density distribution by the command:

B(eam) <identifier>
<distance d0 in TLU between center of distribution and optic axis>
<half width g0 in TLU of the distribution>
<n, with j = 1− (g/g0)

n defining the distribution with g ≤ g0 >
example: B X 0.005 0.003 2 ;

There are three possible choices for the <identifier>:

• X or Y in TLU ;

• A or B ;

• G or D in units of the reference mass m00 or energy K0 .

If the command reads only BX,BY,BA,BB,BG,BD; a homogeneous distribution n = ∞
is assumed as default with g0 being the maximal coordinate given in the initial phase space
definitions PX or PY . When several PP–commands (see section 5.11) are used in the same
GIOSIN.DAT–file, each PP–command may be preceded by a set of BEAM–commands to define
a new and independent selection of trajectories for each graph.

4.5.5 Defining Beam–Shifts and Beam–Rotations [SR]

In connection with the “P(lot) P(hase space)”–command one can shift and rotate the coordinate
system at any zi by the command:

S(hift) R(otate)
< x–shift in TLU> < a–bend in RAD>
< y–shift in TLU> < b–bend in RAD>
<rotation Θ around the optic axis in degrees> ;

example: S R 0.01 0.01745 0 0 0 ;

The SR–command will be executed in the following order: firstly bends, secondly shifts and
thirdly rotations.

For positive values of bends and shifts the optic axis is bent and shifted in the negative x– and
y–directions. A positive value of Θ causes a righthand rotation of the xy–plane around the optic
axis so that a point x1 = y1 > 0 becomes x2 > x1, y2 < y1 for small values of Θ. Note that
the SR–command only modifies the phase–space graphs. Note especially that, though feasible
in principle the SR–command does not modify the floor coordinates UV . When combining the
SR–command and the CB–command be especially careful to count the bend angles all in the
correct direction!

5 Arithmetic calculations

Arithmetic calculations are possible with standard functions (+), (−), (∗), (÷), (|), ABS (. . .),
SIGN (. . .) and up to five levels of brackets.
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5.1 The Definition of Arithmetic Expressions

The definition of a name for an arithmetic expression is performed by the command:

W(one–letter name) = . . . arithmetic expression . . . ;

example: B=(X,AD)/((A,A)∗(X,D)) ;

example: A=2 ∗0.5 −F ;

In the second example F must have been defined upstream as an arithmetic expression.

The . . . arithmetic expression . . . may contain the following operators:

• constants [real numbers like 0.5 or 1.0 followed by at least one blank (t)]

• names of other arithmetic expressions

• elements of the transfer matrix at zi, for instance, (X,A), (Y,B), (X,AA), (X,AAD), . . .

• coordinates of rays (see section 4.5.1), for instance, (@, x), (@, A),(@, Y ), . . .

• names of variables (see section 6.4)

5.2 Using Algebraic Formulas

Use of a prior defined name of an arithemtic expression, i.e. an “algebraic variable” in a
GIOS–command, is achieved by

. . . = W . . .

example: D L =A ;

6 Selection of FIT Routines

6.1 The Interactive Fit [*INT]

For an “interactive fit” the first line in the GIOSIN.DAT file must read only:

∗INT(eractive)

example: ∗INT
DESIGN 17A
. . .
. . . ;

and the second line must contain the title. Then one can stop, restart or cancel the optimisation
procedure at any time as well as set variables and print–out parameters. A description of the
possibilities is given in a menu on–line.
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6.2 Varying the Length of a Field–Free Region to achieve an Image, a Pupil
or a Waist [FI, FP, FW]

There are three commands which add a drift length ∆L to an existing system at zi where ∆L is
chosen such that an image, a waist or a pupil is achieved at z = zi + ∆L. These commands are:

F(it) I(mage) <identifier> < zmax in TLU> < zmin in TLU> ;

F(it) W(aist) <identifier> < zmax in TLU> < zmin in TLU> ;

F(it) P(upil) <identifier> < zmax in TLU> < zmin in TLU> ;

There are two possible choices for the <identifier>:

• X: a x–image, a x–waist, a x–pupil;

• Y: a y–image, a y–waist, a y–pupil.

6.3 Choosing a Fitting Algorithm [FS, FG]

There are two fitting algorithms installed in GIOS (“simplex” or “conjugated gradients”) which
are activated by the commands:

F(it) S(implex) <number of fit cycles> ;

F(it) G(radient) <number of fit cycles> ;

example: F G 10 ;

default: F S 25 ;

The number of fit cycles determines after how many iterations intermediate results are printed.
For most optimisations it is recommended to use FS.

6.4 Selecting Variables [V]

Quantities which should be varied must be amended by

. . . V(w <lower limit> <higher limit>) . . .

In case the lower and higher limits are omitted, these limits are assumed to be −∞ and +∞.

example: D L 1.0V(Z) ;

example: H = 1.0V(B 0.1 1.5) ;
D L =H ;

The name w stands for an one–letter symbol that allows subsequent referencing (or coupling) to
another variable. If there is no need for a back reference the one–letter symbol can be omitted.

example: D L 1.0V ;

example: D L 1.0V(0.75 1.25) ;

In case two variables have the same name, the variables are varied in the same or in the opposite
direction if the names of the two variables have the same or the opposite sign, respectively. If
the names of the two variables have opposite signs the variables are varied in opposite directions.

example: D L 1.0V(+C) ; or D L 1.0V(C) ;

example: D L 1.0V(+C) ;
D L 1.0V(−C) ;

28



6.5 How to Cause some Matrix Elements to Attain Desired Values [F]

If it is desired that a certain matrix element takes up a goal value at zi, one can use the command:

F(IT) (f,g) <goal value> <weight> !a,b,c, . . . ;

example: F (X,AA) 0 ;

example: F (X,A) 0 10000 !C,S ;

(f,g) here characterizes some matrix element. The symbols a,b,c are names of variables as defined
in section 6.4.

The goal for the fitting routine is to minimize the sum of all Σ{[(f, g)−goal value]∗weight}2. In
case that the weight factor has a negative sign, the fit routine stops as soon as the expression
[abs((f, g)∗weight)] is smaller than [abs(goal value)]. As default the goal value is assumed to be
0, the weight 1 and the list of variable names to include the names of all variable quantities.

6.6 How to Cause some Algebraic Variables to Attain Desired Values [FA]

In a similar manner that a matrix element can be postulated to attain certain values at zi, one
can postulate a certain algebraic variable to attain a goal value at zi by the command:

F(it) A(lgebraic) <algebraic variable> <goal value> <weight>

example: F A A 0 ;

example: F A B 4.5 1000;

The symbols a,b,c are names of variables as defined in section 6.4.

The goal for the fitting routine is to minimize the sum of all
Σ{[<algebraic variable> −goal value] ∗weight}2. In case the weight factor has a negative sign,
the fit routine stops as soon as [abs(<algebraic variable> ∗weight)] is smaller than [abs(goal value)].
As default the goal value is assumed to be 0, the weight 1 and the list of variable names to include
the names of all variable quantities.

6.7 How to Cause some Floor Coordinates to Attain Desired Values [FC]

There is also the possibility to postulate that the floor coordinates U,V or the angle W of the
optic axis relative to its initial direction attain certain values by the command

F(it) C(oordinate) @ <goal value> <weight> ;

@ stands for either U or V or W.

The goal for the fitting routine is to minimize the sum of all Σ{[C−goal value]∗weight}2.
In case the weight factor has a negative sign, the fit routine stops as soon as [abs((C −
goal value)∗weight)] is smaller than [abs(goal value)]. As default the goal value is assumed to
be 0, the weight 1 and the list of variable names to include the names of all variable quantities.
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6.8 How to cause Beam Envelopes to attain certain Values [FE]

The first–order cross section of a beam can be fitted to a desired value by the command

F(it) E(nvelope) <identifier> @
<goal value for beam cross section> <weight>;

example: F E E Y .01 999 ;

@ stands for either X or Y. There are two possible choices for the <identifier>:

• P: parallelogram–like phase–space areas (x, a) and (y, b) are assumed;

• E: elliptical phase–space areas (x, a) and (y, b) are assumed.

If the <identifier> is left off completely, P is chosen if PX, PY were used at the beginning of
the GIOS input and E is chosen if TX, TY were used.

The goal for the fitting routine is to minimize the sum of all Σ{[@−goal value]∗weight}2. In
case that the weight factor has a negative sign, the fit routine stops as soon as the expression
[abs((@−goal value)∗weight)] is smaller than [abs(goal value)]. As default the goal value is
assumed to be 0, the weight 1 and the list of variable names to include the names of all variable
quantities.

7 Optical Systems Consisting of Repetitive or of
Mirror–Symmetric Cells

7.1 The Definition of a Sub–System [BU, BE]

A BLOCK of a system is characterized by a name that consists of several letters and/or numbers.
A block is defined by:

B(lock) U(nit) <block name> ;
. . .
. . .
B(lock) E(nd) ;

The block–name may consist of up to four letters. This command causes the command lines of
the corresponding block to be stored and the transfer matrix of the block to be calculated. The
fit commands in this BLOCK will be used only to calculate the transfer matrix of the block.

7.2 Using an Earlier Defined Block [IB]

The input command lines of a block defined in section 7.1 are included6 in an optical system by
one of the commands:

6Note that inside a B(lock) one can only

1. use the ”C R” command if the reference energies at the entrance and exit of the block are identical

2. include an external accelerating matrix if it applies to the phase–space before the acceleration column.
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I(nclude) B(lock) <block name> ;

I(nclude) B(lock) < −block name> ;

In the second case, the command lines of the block are included in reverse order7. This is useful
for the design of mirror symmetric systems.

7.3 Storing the Transfer Matrix of a Block [WM]

The transfer matrix of a block as defined in section 7.1 is written to the file TAPE09.DAT by
the command

W(rite) M(atrix) <block name> ;

For writing the system matrix of the entire system onto TAPE09.DAT, the block name must be
“∗” only. In this case the name of the matrix is taken from the first four characters of the title
line.

7.4 Using the Stored Transfer Matrix of a Block [IM]

The transfer matrix of a block as defined in section 7.1 is included in an optical system by the
command

I(nclude) M(atrix) <block name> ;

The matrix used here can either be defined in a “B(LOCK) U(NIT)”–command or it will be read
from the file from TAPE09.DAT, if it had been written to the file TAPE09.DAT in a previous
GIOS run .

7.5 Defining a System that Consists of Many Similar Sub–Systems [DS, DE]

In certain cases, some sub–system must be used repeatedly. This is achieved by the almost
self–explanatory command:

D(o) S(equence) <number of cycles> ;
. . . ;
. . . ;
D(o) E(nd) ;

8 Calculating Lists of Systems

8.1 Varying specified Quantities [DL]

To determine the dependence of an optical system from one of its quantities, one can use the
command

7Note here that the ”I M” command can not be used inside a reversed block.
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D(ata) L(ist) <name of variable>
<first value to be used as variable>
<second value to be used as variable>
<third value to be used as variable>
< . . . > ;

Here the variable of the given name takes up the listed numerical values, for each of which
GIOS must calculate the optical system once. This variable must be defined in a preceding
GIOS–command as

. . . < numerical value> D (<name of variable>)

The “D(ata) L(ist)”–command must be added at the end of the GIOS–input in the following
manner:

title line
. . . ;
. . . ;
. . . ;
END ;
REPEAT
D L . . . ;
D L . . . ;
END ;

If more than one D L–command is found, GIOS calculates the optical system for all possible
combinations of the corresponding variables [see also Example 4 in the Appendix].

As default there is no data output for a REPEAT–command.

8.2 Storing GIOS Results [WD]

In order to write specific GIOS results as a table on the file TAPE10.DAT one must use the
command:

W(rite) D(ata) @ <identifier> ;

@ here stands for:

• the name of a variable,

• an algenraic expression,

• a matrix element (f,g) where the value of this matrix element is multiplied by the corres-
ponding maximal values of X,A,G,D,Y or B defined in the PX, PY or TX, TY commands.

The <identifier> – here a name of the result – is written onto TAPE10.DAT. This file must
later be read with a standard FORTRAN program.
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9 Appendix

9.1 Comparison between GIOS, TRANSPORT and MARYLIE

We have compared to third order the results of GIOS, TRANSPORT and MARYLIE as far as
magnetic quadrupoles and magnetic sector fields are concerned8. In these comparisons GIOS
and MARYLIE were in very good agreement to third order including fringing field terms while
there were differences already to lower orders between GIOS and TRANSPORT. For such com-
parisons, however, it should be noted that the description of particle trajectories in MARYLIE
and in TRANSPORT are slightly different. In TRANSPORT the inclinations of ion trajectories
are desribed by x’=px/pz and y’=py/pz, where px, py, pz denote the x, y, z components of the
momentum of the particle under consideration. In MARYLIE the inclinations of particle trajec-
tories are described in by x’=px/p0 and y’=py/p0, i.e. in the so called ”symplektic” form, with
p0 being the momentum of the reference particle. In GIOS both descriptions are allowed. In its
standard form GIOS uses the ”nonsymplektik” form used in TRANSPORT and as a nonstan-
dard option the ”symplektik” form used in MARYLIE. Note that the elements of a ”symplektic”
and a ”nonsymplektic” transfer matrix should all agree except for the second order chromatic
elements and for all third order elements.

In some instances the need arose to recalculate a TRANSPORT calculation by using GIOS.
Since TRANSPORT neglects some of the fringing–field effects the results can not be identical
though they usually are similar. Before starting such a recalculation by GIOS it is useful to use
the GIOS description of fringing fields such that only the rough TRANSPORT approximation
of fringing fields is used.

In case the ion optical system starts with an upright phase space, i.e. if one chooses in GIOS:
Lx=Ly=∞ (with ∞ being written as 0 in the ”P X” and ”P Y” commands)one finds that:

1. for magnetic quadrupoles9. the results of the TRANSPORT command

5.0 1.0 -8.03316 2.5

can be simulated by GIOS, by describing in its nomenclature a correspondingly nonrealistic
fringing field distribution by:

F F 0 ;
M Q 1.0 -0.803316 0.025 ;
F F 0 ;

2. For magnetic sector fields the results of the TRANSPORT command

8Electrostatic elements are so far only described in GIOS but not in TRANSPORT or in MARYLIE
9Usually the neglection of fringing fields in TRANSPORT results in pole tip flux densities which are ≤ 1%

wrong. Such a deviation then must be corrected experimentally by varying the magnet currents in the finally
built quadrupoles.
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1. . . . . . . . . 5.39741
16.0 5 5
16.0 7 .35
2.0 10
4.0 2.61799 18
2.0 10

can be simulated by GIOS to second order by describing in its nomenclature a correspond-
ingly nonrealistic fringing field distribution by:

R P 322014 238.0592 ;
F F 0 10 0 0 -.7 0 ;
M S 10 15 0.05 ;
F F 0 10 0 0 -.7 0 ;

The third order terms of TRANSPORT can be reproduced by GIOS only if the FF-commands
are left off completely, i.e., if absolutely no fringing field effects are taken into account.

9.2 How to rerun a TRANSPORT–calculation by GIOS

When an ion-optical system has been optimized by TRANSPORT, it can be a good idea to
further optimize it by GIOS, since then the fringing fields can better be taken into account. A
certain problem arises, however, since the input data of TRANSPORT must be modified so that
GIOS can calculate the same problem. Besides the need to describe the optical system, it here is
necessary to change the σij-description of the initial oblique phase-space ellipse in TRANSPORT
to the initial oblique parallelogram-like phase-space area of GIOS with an inscribed phase-space
ellipse. Assuming that one knows the values of

• √σ11,
√
σ22, r21 as well as εx

with πεx being the area of the xx’ phase-space ellipse

• √σ33,
√
σ44, r43 as well as εy

with πεy being the area of the yy’ phase-space ellipse

one should fill into the 3rd and 4th lines of the GIOS-input file:

1. in case one wants to use the standard GIOS description of a parallelogram-like phase-space
area –into which an ellipse is inscribed with the ellipse being tangential to the parallelogram
at the midpoints of all its sides–

• P X <
√
σ11 > < εx/

√
σ11 > < −1

r21

√
σ11
σ22

>

• P Y <
√
σ33 > < εy/

√
σ33 > < −1

r43

√
σ33
σ44

>

2. in case one wants to use the GIOS description of an elliptical phase-space area –around
which a parallelogram with two upright sides is circumscribed–

• T X < r21/
√

1− r221 > < σ11/εx > < εx >
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• T Y < r43/
√

1− r243 > < σ33/εy > < εy >.

In order to compare the results of the TRANSPORT and the GIOS calculations one can make
GIOS to also calculate the values of R=

√
σ11, S=

√
σ22, T=r21 and U=

√
σ33, V=

√
σ44, W=r43

by writing at the top of the list of elements in the GIOS-input file:

• X = <
√
σ11 > ;

• E = < εx > ;

• A = E/X ;

• Y = <
√
σ33 > ;

• F = < εy > ;

• B = F/Y ;

and at the end of the GIOS-input file, i.e. after the output transfer matrix has been determined,
calculate the above required quantities via an arithmetic expression. An example, in which this
is done, is added for illustrating purposes.
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EXAMPLE OF HOW TO DETERMINE S11, S22, R21, S33, S44, R43

;ASSUME: SQRT(S11)=.005, SQRT(S22)=.002, R21=-.998, EPS=.0005

;ASSUME: SQRT(S33)=.002, SQRT(S44)=.004, R43=-.985, EPS=.0004

R P .1 100 1 ;

P X .005 .010 2.5050 ;

P Y .002 .200 0.5076 ;

C O 3 3 ;

F S ;

;************************

X = .005 ;

E = .0005 ;

Y = .002 ;

F = .0004 ;

;************************

A = E/X ;

B = F/X ;

;-----------------------------------------------------------------------------

D L ... ;

F F ... ;

M Q ... ;

F F ... ;

D L ... ;

;....... ;

;....... ;

;-----------------------------------------------------------------------------

R = (((X,X)*X)↑2 +((X,A)*A)↑2 )↑.5 ;

S = (((A,X)*X)↑2 +((A,A)*A)↑2 )↑.5 ;

T = (1 /(((X,X)*(A,X)*X*X +(X,A)*(A,A)*A*A)/E) ↑2 +1 )↑ -0.5 ;

U = (((Y,Y)*Y)↑2 +((Y,B)*B)↑2 )↑.5 ;

V = (((B,Y)*Y)↑2 +((B,B)*B)↑2 )↑.5 ;

W = (1 /(((Y,Y)*(B,Y)*Y*Y +(Y,B)*(B,B)*B*B)/F) ↑2 +1 )↑ -.5 ;

;

P N P ;

P N E ;

P N S ;

END ;

END
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