From FRS to Super-FRS

Martin Winkler
Artic FIDIPRO-EFES Workshop, April 20-24, 2009, Saariselkä, Finland

- From GSI to FAIR (Facility of Antiproton and Ion Research)
- The FRagment Separator FRS @ GSI
- The Super-FRS (Layout, Features, Challenges) @ FAIR
- The Experimental Branches of the Super-FRS
- Summary
GSI and FAIR

GSI today

UNILAC

SIS 18

FRS

ESR
GSI and FAIR

FAIR in the future

$L_{SIS100/300} = 1.1 \text{ km}$

Super-FRS
GSI

Linac: UNILAC
Synchrotron: SIS-18
Storage Ring: ESR
Secondary Beams:
 RIB (FRS)
 Pion

FAIR

2 Linac's
 Proton
 Electron

8 Rings
(Synchrotron, Storage/Cooling)
 SIS-100, SIS -300
 CR, RESR,NESR
 e⁻ (\(\bar{p}\)) - Ring (collider)
 HESR (\(\bar{p}\))
 FLAIR

Secondary Beams:
 RIB (Super-FRS)
 Anti-Proton (\(\bar{p}\))
Beams now:
Z = 1 – 92
(protons to uranium)
up to 2 GeV/nucleon
Some beam cooling

Future Beams:
Intensity: primary 100 fold
secondary 10000 fold
Species: Z = -1 – 92
(anti-protons to uranium)
Energies: ions up to 35 - 45 GeV/u
antiprotons 0 -15 GeV/c
Precision: full beam cooling
Secondary Nuclear Beam Facility at GSI

FRS: In-flight Separator & High-Resolution Spectrometer

1. Decay Spectroscopy, High-resolution spectrometer, range bunching
2. Masses, Lifetimes, Direct Reactions, Isomeric Beams
3. Reactions Studies (Complete Kinematics)

M. Winkler, Artic FIDIPRO-EFES Workshop, April 20-24, 2009, Saariselkä, Finland
B_\rho - \Delta E - B_\rho Separation Method

Production Target

\[^{86}\text{Kr} \quad 500 \text{ A} \cdot \text{MeV}\]

\[\Delta E \propto \frac{Z^2}{m}\]

First Selection

First and Second Selection

M. Winkler, Artic FIDIPRO-EFES Workshop, April 20-24, 2009, Saariselkä, Finland
Standard FRS equipments

- **Target**
- **TPC - x,y position** @ S2,S4
- **Plastic scintillator (TOF)** @ TA, S1, S2, S3, S4, S8
- **Beam profile** @TA,S1,S2 S3,S5,S6

Full isotope identification

\[B\rho = \frac{mv}{q}; \quad q = Z \]

\[\begin{align*}
ToF &\rightarrow v \\
\Delta E &\rightarrow Z \\
B\rho &
\end{align*} \]

\[\implies \frac{A}{Z} El \]

- **NEW:** Isomer tagger @ S4

- **SEETRAM Intensity monitor** (primary beams) @TA
- Schottky probes, Degrader, etc.
Tracking detectors at the FRS

High-resolution momentum measurements ($\sim 1.5 \cdot 10^{-4}$) in knockout reactions

$$^{33}\text{Mg} + \text{C} \rightarrow ^{32}\text{Mg} + (\gamma)$$

Interaction cross-section measurements in the Island of Inversion @ 1GeV/u

- S1 total rate: $4 \cdot 10^4$/s
- ^{33}Mg rate at S2: ~ 40/s
- max. trigger rate: 10^3/s
 (low Z rejection)

Rate limitation due to pile-up in the Music at S2
(pile-up rejection by trigger selection)

48Ca intensity: $\sim 2 \cdot 10^9$/spill
- spill (1-8) sec
- multi-injection mode (SIS18)
Landmarks from FRS Experiments

- New Fission Studies
- New Mass Measurements
- Pionic Atoms
- New Fission Fragments
- Shells far off Stability
- Skin Nuclei
- Halo Nuclei
- ^8B
- ^{11}Li
- ^{100}Sn
- ^{78}Ni

M. Winkler, Artic FIDIPRO-EFES Workshop, April 20-24, 2009, Saariselkä, Finland
The Present Rare Isotope Facility at GSI

Limitations

- 'Low' primary beam intensity (e.g. 10^9 238U/s)
- 'Low' transmission for projectile fission fragments (4-10% at the FRS)
- 'Low' transmission for fragments into the storage ring and to the exp. area #3 (beam-line magnets are not designed for fragment beams)
- Limited space at focal planes and the experimental areas
Goal: Larger Acceptance

- Elements p - U
- Energy up to 1.5 GeV/u
- Intensity up to 10^{12}/s
 (depending on element)
- DC or pulsed operation

Design Parameters:
- $\varepsilon_x = \varepsilon_y = 40 \pi \text{ mm mrad}$
- $\Phi_x = \pm 40 \text{ mrad}$
- $\Phi_y = \pm 20 \text{ mrad}$
- $\Delta P/P = \pm 2.5 \%$

- $B_p = 2 - 20 \text{ Tm}$
- $R_n = 750 / 1500$
 (first / second stage)

- Spot size on target:
 - $\sigma_x = 1.0 \text{ mm}$
 - $\sigma_y = 2.0 \text{ mm}$

Features:
- 2 Separator-stages in achromatic mode
- Separation by $B_p-\Delta E-B_p$ method
 (variable degrader)
- Multi-branch system
- Large acceptance utilizing sc magnets
- Handling concept for high- radiation area

M. Winkler, Artic FIDIPRO-EFES Workshop, April 20-24, 2009, Saariselkä, Finland
Comparison of FRS with Super-FRS, intensity gain

<table>
<thead>
<tr>
<th></th>
<th>$B_{p_{\text{max}}}$</th>
<th>$\Delta p/p$</th>
<th>$\Delta \Phi_x$, $\Delta \Phi_y$</th>
<th>resolving power</th>
<th>gain factor ^{18}C</th>
<th>gain factor ^{132}Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRS</td>
<td>18 Tm</td>
<td>1.0 %</td>
<td>± 13, ± 13 mrad</td>
<td>1500</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Super-FRS</td>
<td>20 Tm</td>
<td>2.5 %</td>
<td>± 40, ± 20 mrad</td>
<td>1500</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

including primary rate: 250 20 000

M. Winkler, Artic FIDIPRO-EFES Workshop, April 20-24, 2009, Saariselkä, Finland
Production Rates for Exotic Nuclei at FAIR

K.-H. Schmidt
Separation Performance of the Super-FRS

1.1 A GeV 238U on 4 g/cm2 C target, two Al degraders d/R=0.3, d/R=0.7

Features of two degrader stages

- Introduction of another separation cut in the A-Z plane
- Reduction of contaminants from fragments produced in the degrader
- Optimization of the fragment rate on detectors in the Main-Separator
- Possible usage of Pre- and Main-Separator for secondary reaction studies
Technical Challenges

Remote Handling

Target & Beam Catcher

Cryogenics

SC Multiplets

Effective length (quads) 0.8 / 1.2 m
Aperture (warm) ± 150 mm
Pole radius 240 mm
Field gradient 1.0 – 10.0 Tm

Main-Separator

Degrader 1

Degrader 2

SC Dipoles

Radiation Reistant Magnets

M. Winkler, Artic FIDIPRO-EFES Workshop, April 20-24, 2009, Saariselkä, Finland
Shielding and Handling Concept in the Target Area (vertical plug system)

Promt Dose Rates 1.5 GeV/u $10^{12}/s$ 238U
(top view, beam level)

Target building (schematic)
Graphite Wheel Target

- Cooling only by radiation
- $R_{out} = 22.5$ cm

Solid graphite
SGL Carbon R 6400P
5 steps, 1 – 8 g/cm2
each step 16 mm wide

Spokes from INCONEL 600

Si_3N_4 ball bearings
Ag-coated cages
MoS_2 lubrication
$T_{\text{limit}} = 150^\circ\text{C}$
Prototype Target
to be used at FRS with SIS18 beams

- Prototype target ready
- Off-line tests started
- Preparation of induction heating (20 kW generator)
Beam Catcher
(in Collaboration with VECC Calcutta, India)

The relative difference in magnetic rigidity (Bp) determines where the beam after passing the target is going to be dumped.

- **Front part:** graphite (20cm+), absorb strong pressure waves, water cool
- **Back part:** iron (60cm) to absorb protons and neutrons.

Remote Handling of Beam Catcher
Pole gap height: 180 mm
Length / width / height (m): 3.2 / 3.0 / 2.1
Total weight: 100 t
Integrated field quality $\pm 3 \cdot 10^{-4}$
Superferric Dipoles for the Main Separator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of main dipoles</td>
<td>21</td>
</tr>
<tr>
<td>Dipole field</td>
<td>0.15-1.6T</td>
</tr>
<tr>
<td>Bending angle</td>
<td>9.75°</td>
</tr>
<tr>
<td>Curvature radius, R</td>
<td>12.5 m</td>
</tr>
<tr>
<td>Effective straight length, L_{eff}</td>
<td>2127 mm</td>
</tr>
<tr>
<td>Good field region</td>
<td>±190±35 mm</td>
</tr>
<tr>
<td>Pole gap height</td>
<td>170 mm</td>
</tr>
<tr>
<td>Integral field quality (relative)</td>
<td>±3×10⁻⁴</td>
</tr>
</tbody>
</table>

- H-Type, warm bore, warm iron
- Sector shape
- Total weight: ~50 t

![Pre-Separator to Main-Separator diagram](image)

- Case welding (LHe vessel)
- Prototype ready for mapping
The NUSTAR Facility at FAIR
(The 3 Branches of the Super-FRS)

Super-FRS

NUSTAR = Nuclear Structure, Astrophysics and Reactions

M. Winkler, Artic FIDIPRO-EFES Workshop, April 20-24, 2009, Saariselkä, Finland
NUSTAR LOI's (667 authors)

8 approved LOI by NUSTAR-PAC → presented as Technical Proposals in spring 2006

1.) Low Energy Branch (LEB)
- High-resolution In-Flight Spectroscopy (HISPEC)/
- Decay Spectroscopy with Implanted Ion Beams (DESPEC)
- Precision Measurements of very short-lived Nuclei using an
- Advanced Trapping System for highly-charged Ions (MATS)
- LASER Spectroscopy for the Study of Nuclear Properties (LASPEC)
- Neutron Capture Measurements (NCAP)
- Antiprotonic Radioactive Nuclides (Exo+pbar)

2.) High Energy Branch (R3B)
- A Universal Setup for Kinematical Complete Measurements of
 Reactions with Relativistic Radioactive Beams (R3B)

3.) Ring Branch (STORIB)
- Study of Isomeric Beams, Lifetimes and Masses (ILIMA)
- Exotic Nuclei Studied in Light-Ion Induced Reactions
 at the NESR Storage Ring (EXL)
- Electron-Ion Scattering in a Storage Ring (e-A Collider) (ELISe)
- Antiproton-Ion Collider: A Tool for the Measurement of Neutron and
 Proton rms radii of Stable and Radioactive Nuclei (AIC)

M. Winkler, Artic FIDIPRO-EFES Workshop, April 20-24, 2009, Saariselkä, Finland
Summary

- Super-FRS based on experiences with FRS
- Large-acceptance device using large-aperture SC magnets
- Two separator stages, multi-branch system
- R&D for major components as well as civil construction under progress
- Super-FRS as part of FAIR

→ Construction together with FAIR member states

Thank You!