

Accelerators: from the source to the target

Jens Stadlmann FAIR Synchrotrons 9th August 2007

Contents

- Motivation: Why do we build accelerators?
- Some examples from around the world.
- Basic functions
- The GSI Accelerator Complex
- An outlook to the FAIR Project
- Discussion

Part I: Motivation and Overview

Accelerator Energies

- MA

Defir

efinition electron volt:	Energies in eV			Key
e	Lower limit of the mass of the Higgs boson	114 GeV		proton neutron • quarks () gluons
1 V	W, Z exchange bosons of the weak interaction	82/93 GeV		
	Restmass of antiprotons: E=mc ²	0.938 GeV		
1 eV=1.602 10 ⁻¹⁹ J	Excitation energies in nuclei	MeV		
1 keV= 10 ³ eV 1 MeV- 10 ⁶ eV	Energies of electronic levels in heavy ions	keV		
1 GeV= 10 ⁹ eV 1 TeV= 10 ¹² eV	lonisation energy of The hydrogen atom	13 eV	RS	.

Accelerated particles

Electrons:

Protons:

 $m_e = 9.1 \times 10^{-31} \text{ kg}$ q=-e, e=1.6x10⁻¹⁹ C

Pro:

- Elementary particles
- Simple generation

Cons:

Synchrotron radiation

Pro: Synchrotron radiation Generation

Cons:

Not a elementary particle

Heavy lons:

m=Am_p, q=Ze, Example: $^{238}U^{92+}$

Pro:

- Synchrotron radiation
- High nucleon density
- Energy deposition

Cons:

- Generation
- Lifetime

Not only the energy counts:

G S I

Example "Quark-Gluon Plasma"

Accelerated particles

Electrons:

Protons:

 $m_e = 9.1 \times 10^{-31} \text{ kg}$ q=-e, e=1.6x10⁻¹⁹ C

Pro:

- Elementary particles
- Simple generation

Cons:

Synchrotron radiation

Pro: Synchrotron radiation Generation

Cons:

Not a elementary particle

Heavy lons:

m=Am_p, q=Ze, Example: $^{238}U^{92+}$

Pro:

- Synchrotron radiation
- High nucleon density
- Energy deposition

Cons:

- Generation
- Lifetime

Not only the energy counts:

G S I

Example "Quark-Gluon Plasma"

Accelerators in History

Typical Accelerator Types

- electrostatic
 - van de Graff, Tandem: to about 10 MeV; for nuclear physics and isotope production
 - cascade
 - Cockcroft-Walton: to several MeV; X-ray sources and injectors
 - Linear
 - RFQ radio frequency quadrupole
 - drift-tube(Wideroe, Alvarez): preaccelerators
 - Waveguide: electrons only(SLAC, NLC)

Electrostatic Accelerators

700 kV Cockcroft-Walton (FNAL) (0.7 MeV Protons)

Electrostatic Van de Graaff Accelerator

5 MV Van de Graaff at Hahn-Meitner, Berlin

Electrostatic Van de Graaff Accelerator

5 MV Van de Graaff at Hahn-Meitner, Berlin

Tandem Accelerator

AC / DC electric field strengths

Linear RF Accelerators: Wideröe (Aachen 1928)

For 10 (100) MHz and 2 MeV protons we get a maximum drift tube length of 1 (0.1) m !

GSI Wideröe

Acceleration of p to U^{10+} up to 1.4 MeV/u.

Frequency 27 MHz.

130 drift tubes per tank. 4 tanks total. Total length 30 m.

Installed 1975. Deinstalled 1999.

Resonant Radio Frequency (RF) Accelerators

Energy gain per passage: $\Delta E = qV\sin(\omega_{RF}t)$ Circular **Resonant RF cavity:** Accelerating accelerator station $E(r) = E_0 J_0\left(\frac{\omega}{c}r\right).$ $\frac{2\pi f}{c}R = 2.405.$ (a) $f \approx 100 MHz$ (b) Linear accelerator R

GSI Alvarez

L. W. Alvarez, USA 1947

Acceleration of p to U^{28+} from 1.4 to 11.6 MeV/u.

Frequency 108 MHz.

150 drift tubes per tank. 4 tanks total. Total length 55 m.

Circular Accelerators: Cyclotron

Constant (magnetic) bending field, increasing radius.

Part II: Modern Accelerators

- Different requirements lead to different accelerator layouts
- Beside the scientific use there are accelerators for industrial and medical applications

Circular Accelerators: Collider

CERN Large Electron-Positron Collider (LEP)

Brookhaven Nat'l Labs, Long Island, USA

Relativistic Heavy Ion Collider

AGS: Alternating Gradient Synchrotron

G S 1

Gold-Gold Collissions in RHIC

Jens Stadlmann | GSI Summer Student Lecture 2007

CERN Large Hadron Collider (LHC)

Protons and heavy ions (Pb) Energy: > 1 TeV Protons in the ring: 3E14 Current: 0.5 A Beam energy: 3 MJ Magnetic dipole field: 8 T

Circumference: 27 km

Jens Stadlmann | GSI Summer Student Lecture 2007

Part III: Basic principles

- The ions in the accelerator a guided by electric and magnetic devices. This ion-optical layout is called "lattice".
- The function of an accelerator facility is assured by the lattice. The requirements of the experiments "form" the machine.

Dipole Magnets

As linacs are dominated by cavities, circular machines are dominated by magnets

 $nI = \oint \vec{H} d\vec{s} = H_E l_E + H_0 h \approx H_0 h \implies B = \mu_0 \frac{nI}{h}$

Iron dipole magnet: B<2 T

superconducting dipole magnets: B=3-8 T

Jens Stadlmann | GSI Summer Student Lecture 2007

LEP (Large Electron Positron Collider) Dipolmagnet, CERN

Bending in a dipole magnet

$$\dot{\theta} = \frac{q B_y}{\gamma m}$$
$$\theta = \frac{q}{p_s} \int_{s_1}^{s_2} B_y ds \approx \frac{l}{R}$$
$$\oint B_y ds = 2\pi p_s / q = 2\pi B_0 R_0$$

Rigidity: B₀R₀ [Tm]

θ

Focusing (Quadrupole) Magnets

Alternating Gradient Focusing

Sequence of focusing and de-focusing lenses acts as effective focusing lens

Jens Stadlmann | GSI Summer Student Lecture 2007

Particle Coordinates in Circular **Accelerators**

Errors: The ions try from the ideal path

$$\begin{pmatrix} x_0 \\ x'_0 \end{pmatrix} = (I - M)^{-1} \begin{pmatrix} 0 \\ \theta \end{pmatrix} = \frac{\theta}{2\sin\pi Q} \begin{pmatrix} \hat{\beta}_0 \cos\pi Q \\ \sin\pi Q - \hat{\alpha}_0 \cos\pi Q \end{pmatrix}$$

What is this emittance everybody keeps talking about?!

Jens Stadlmann | GSI Summer Student Lecture 2007

Single particles and envelopes

Twiss matrix;

$$B = \left(egin{array}{cc} \hat{eta} & -\hat{lpha} \ -\hat{lpha} & \hat{\gamma} \end{array}
ight)$$

Transformation of the Twiss matrix:

$$B(s) = M(s) \cdot B_0 \cdot M^T(s)$$

Envelope:

$$\boldsymbol{X}_m = \sqrt{\hat{\boldsymbol{\beta}}(\boldsymbol{S})\boldsymbol{\varepsilon}_{\boldsymbol{X}}}$$

Jens Stadlmann | GSI Summer Student Lecture 2007

Tune and resonances

 $nQ_x + mQ_y = p$

Order of resonance: |n+m|

Phase Stability and Longitudinal Focusing

Part IV: Welcome to GSI !

GSI accelerators today:

- Linear injector
- Synchrotron
- Another synchrotron called storage ring

The GSI accelerator complex today

Electron Cyclotron Resonance (ECR) Sources

Ionization Processes in Ion Sources

shly-charged ions.

The basic ionization process:

 $e + X \rightarrow X^+ + 2e$

Multiple-charged ions:

$$e + X^{Z+} \to X^{(Z+1)+} + 2e$$

Ionisation cross sections:

 $\sigma(W_e > W_{Z,Z+1})$

Jens Stadlmann | GSI Summer Student Lecture 2007

UNIversal Linear ACcelerator (UNILAC) view from the sources

UNIversal Linear ACcelerator (UNILAC)

Jens Stadlmann | GSI Summer Student Lecture 2007

Schwer Ionen Synchrotron: SIS

Revolution frequency:

$$\omega_0 = \frac{qB_0}{\gamma m} = \frac{v_s}{R}$$

Design momentum:

$$p_s = \gamma m v_s = q B_0 R_0$$

- Constant orbit radius
- •Variable magnetic fields
- •,Synchronous': $h\omega_0 = \omega_{RF}$
- Pulsed beams

View into the SIS tunnel

Experimentier Speicher Ring: ESR

Stochastic cooling in the ESR

Principle of stochastic colling (S. van der Meer, CERN, 1968, Nobelprize 1984):

Time evolution of Schottky signals in the ESR:

Pro: Works at high energy and hot beams

Con.: Long cooling time and signal suppression if high phase space density

Ultra-Cold Beams

Experiments with electron cooling in the SIS:

How do we operate the machines?

Typical Beam Time Schedule GSI

Block 3 / 2007

August 2007

Schedule as of 31-Jul-2007

Week 31							W	eek	32				Week 33							Week 34							Week 35				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
		a U21 Y	i) 7, Ar 7			UE Sch 20 11.4	BIO, holz, Ne, MeV, K6	U217, Block, 48Ca ECR, 3.4 4.0 MeV/u puA, Y7 - SHIPTR/				a/ c) u, 1 AP Ca, X8			U20 48Ca	07, Ba a, 5 M	acke/l leV/u Y7	Herfu , 320	irth, pnA,	U200, Hessberger, 48Ca (ECR), 4.6 MeV/u, 1000 pnA , Y7				U000, 238 U (MEVVA), machine experiments							
	UBIO, Scholz, 7Li, 5-6 MeV, X6							S24	b) 4, Ca	, x 7	U2 Ca,	:) 19, , X8			R 4 MeV	U2 oth/B 8Ca1 //u,50	26, lazevi 7+, 4, 0 pn/	ic, 0 A, Z6			U200 -X4, Heßberger/Mann, 48Ca, copy of Y7 but only 1 Hz, X4				B-Exp., Bender/ Kollmus, Xe, 1.4MeV/u, max, 5ms, 50Hz, UU						
d)	S' H'	e) THE, TA/H1	LI, M	S3 Me	I8, Jonson/Aumann, 20Ne (MUCIS), 500 //u, >1e10/spill, 10s extraction, spill flat, Vacuum at S2, FRS-HTC									S317, Hofmann/Fra nchetti, 40Ar (MUCIS), 11.4				anung 100	go/Nociforo, 48Ca 19+ (ECR), 700- 00MeV/u, 1e9 /spill, FRS						00-	S000, 238U (MEVVA), machine experiments					
W Me\	E067, Karpuk, Sergej/Nörtershäuser Wilfried, 7Li+ (EZR), 58. MeV/u, >10 muA in ESR, I				., .86 ESR	E075, Kester, 20Ne (MUCIS), 4 MeV/u, 1E6/cycle (ESR), Coolin and deceleration in ESR, HITRA													U22	f) 21, U,) J, HTA S334, Wilfinger/Kelic, 238U (MEVVA), 400 MeV/u, 4E9/spill, fast extraction, HHT			Kelic, 400 , fast HT							
																			E0 (ME cod)61, Si VVA), pler, je in ES	Silver/Stoehlker, U92+, U91+ A), 350 MeV/u, 1e8 in ESR, SIS jet target N2, Ar, deceleration ESR to 20-50 MeV/u, ESR										

Allocated blocks include the accelerator tuning time

a) U217, Block, 40Ar (PIG), 3.4 4.0 MeV/u, 1 puA, Y7 - SHIPTRAP

b) S244, Gerl/Gorska, 48Ca, 10-15MeV/u, 10^6/pulse, X7

c) U219, Schaedel, 48Ca(ECR), 4.5-5.5 MeV/u, 1 pmicroA (Pulse), 5 ms, X8

d) S316, Fujita/Gerl, 58Ni (MEVVA), 680 MeV/u, max. intensity, 4-10s extraction, FRS-S4

e) STHE, Schardt, 7Li, 50-300 MeV/u, 1e3-1e8/spill, 2s extraction, HTA and HTM

f) U221, Braeuning-Demian, 238U (MEVVA), 100 MeV/u, block sharing mode with FRS, HTA

Andreas Tauschwitz, Phone +49-6159-712723, E-mail beamtime@gsi.de

Tuesday, 31 July, 2007 18:16

Part V: The future of GSI

FAIR: The Facility for Antiproton and Ion Reserach

This will be YOUR new accelerator!

FAIR – Facility for Antiproton and Ion Research

Gain Factors

- Primary beam intensity: Factor 100 – 1000
- Secondary beam intensities for radioactive nuclei: up to factor **10,000**
- Beam energy: Factor 15

Special Properties

- Intense, fast cooled energetic beams of exotic nuclei
- Cooled antiproton beams up to15 GeV
- Internal targets for high-luminosity in-ring experiments

New Technologies

- · Fast cycling superconducting magnets
- Electron cooling at high ion intensities and energies
- · Fast stochastic cooling

The SIS 100/300 Double-Synchrotron

Storage Ring Complex for Secondary Beams from Super- FRS and pbar-separator **Collector Ring** bunch rotation adiabatic debunching fast stochastic cooling isochronous mode electronto atomic nucl. collider physics cave, HITRAP, **FLAIR** NESR e⁻-cooling RESR deceleration pbar accumulation fast RIB/pbar deceleration

Collector and Accumulator Rings for Exotic Ions

CR+NESR: 2x24 large aperture (±180 mm) superferric (1.6 T) dipole magnets

Jens Stadlmann | GSI Summer Student Lecture 2007

Antiproton Electron Cooling at High Energies

Feasibility study of fast ('seconds') electron cooling for the HESR, Budker Institute, Novosibirsk, RUS

FAIR Operation

- Complex parallel operation
- Minimize commissioning times

G S 1

A big project with major challenges

One problem singled out:

The lifetime of U²⁸⁺ beams in our FAIR accelerators.

Dynamic vacuum

Vakuumchamber

Beam losses due to Stippping in Residual Gas

The collimations system must confine the desorbed gases ($\eta_{eff} = 0$)

Discussion

Some say accelerator physics is all about superlatives and "gigantomania". But isn't that exactly the definition of fun?

With this and some wise words I want to END

Happiness is not to be found in knowledge, but in the acquisition of knowledge.(Egar Allan Poe)

Professor Dr. Christoph Schmelzer, First Director of GSI, "father" of the UNILAC.

