The RISING Project

Technical Details for Fast Beam Proposals

RISING Collaboration

January 2003
Experiment #1

P. Mayet et al.:
Shape evolution in light n-rich nuclei

Nucleus of interest: ^{34}Mg (2 step fragmentation + lifetime)

Primary beam: ^{48}Ca 10^9 pps 400 MeV/u
Production target: ^9Be 4 g/cm2

First step $^{48}\text{Ca} \rightarrow ^{36}\text{Si}$:

Secondary beam: ^{36}Si 312 MeV/u
Yield of ^{36}Si / incident ^{48}Ca: $1.2 \cdot 10^{-5}$ (6.7 $\cdot 10^{-2}$ mb)
Charge states after production target: fully stripped

Al degrader at S1: -
Al degrader at S2: 8500 mg/cm2
Charge states after degraders: fully stripped

Energy at reaction target (S4): 160 MeV/u
Charge states at reaction target (S4): fully stripped

Slits:
S1 ± 10 cm (open)
S2 ± 10 cm (open)
S3 ± 10 cm (open)

Transmission of ^{36}Si:
Yield / incident particle:
At S1 after slits: 72 % 8.7 $\cdot 10^{-6}$
At S2 after slits: 16 % 1.9 $\cdot 10^{-6}$
Total at S4: ($\sigma_x^{^{36}\text{Si}} = 1.6$ cm) 15 % 1.8 $\cdot 10^{-6}$

Yield of ^{36}Si at S4 / all fragments: 0.5

Yield of ^{36}Si at S4 / incident ^{48}Ca: 1.8 $\cdot 10^{-6}$ (1800 pps)

Second step $^{36}\text{Si} \rightarrow ^{34}\text{Mg}$:

Reaction target at S4: ^{27}Al 1.2 g/cm2 d/R= 0.4

Energy of ^{34}Mg behind the reaction target: 135 MeV/u

Yield of ^{34}Mg / incident ^{36}Si: 2.7 $\cdot 10^{-5}$ (1.0 mb, 5 $\cdot 10^{-2}$ pps)
Yield of ^{34}Mg / all nuclei: 1 $\cdot 10^{-3}$ (without ^{36}Si)
Yield of ^{34}Mg / isotopes of Mg: 9 $\cdot 10^{-3}$

Estimated pγ rate for ^{34}Mg (3% γ efficiency, 100% state population): 130 per day
Some additional information

Relative yield of Mg isotopes:

<table>
<thead>
<tr>
<th></th>
<th>^{30}Mg</th>
<th>^{31}Mg</th>
<th>^{32}Mg</th>
<th>^{33}Mg</th>
<th>^{34}Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Slits:
S1 ± 10cm
S2 ± 10cm
S3 ± 10cm

Reaction target ± 3.5cm

Yield of all fragments / incident ^{48}Ca after S1 slits: $1 \cdot 10^{-3}$ ($1 \cdot 10^{6}$ pps)
Yield of all fragments / incident ^{48}Ca before SC21: $3 \cdot 10^{-4}$ ($3 \cdot 10^{5}$ pps)
Yield of all fragments / incident ^{48}Ca before MUSIC at S4: $4 \cdot 10^{-6}$ ($4 \cdot 10^{3}$ pps)
Yield of all fragments / incident ^{48}Ca behind the reaction target: $3 \cdot 10^{-6}$ ($3 \cdot 10^{3}$ pps)

$B_p(D1) = 7.2083$ Tm
$B_p(D2) = 7.2084$ Tm
$B_p(D3) = 5.0638$ Tm
$B_p(D4) = 5.0677$ Tm
Yield(pps/cm)

X at $S4$(cm)

^{37}P

^{36}Si

^{35}Al
ΔE vs $\text{TOF(S}_2\text{S}_4)/Z$ for ^{36}Si
Experiment #2

M. Bentley et al.:
Isospin Symmetry and Coulomb Effects Towards the Proton Drip Line

Nucleus of interest: 45Cr (2 step fragmentation)

Primary beam: 58Ni 109 pps 600 MeV/u
Production target: 9Be 6.3 g/cm2 d/R=0.45

First step 58Ni \rightarrow 46Cr:

Secondary beam: 46Cr 410 MeV/u
Yield of 46Cr / incident 58Ni: 3.1 \cdot 10$^{-6}$ (0.014 mb)
Charge states after production target: fully stripped

Al degrader at S1: -
Al degrader at S2: 5800 mg/cm2 190 MeV/u } d/R= 0.6

Charge states after degraders: fully stripped

Energy at reaction target (S4): 164 MeV/u

Charge states at reaction target (S4): fully stripped

Slits:
S1 \pm 10cm (open)
S2 \pm 10cm (open)
S3 \pm 10cm (open)

Transmission of 46Cr:
Yield / incident particle:
At S1 after slits: 91 % 2.9 \cdot 10$^{-6}$
At S2 after slits: 46 % 1.5 \cdot 10$^{-6}$
Total at S4: ($\sigma_x(^{46}$Cr) = 1.9 cm) 32 % 1.0 \cdot 10$^{-6}$

Yield of 46Cr at S4 / all fragments: 0.2

Yield of 46Cr at S4/ incident 58Ni: 1.0 \cdot 10$^{-6}$ (1000 pps)

Second step 46Cr \rightarrow 45Cr:

Reaction target at S4: 9Be 700 mg/cm2 d/R= 0.3

Energy of 45Cr behind the reaction target: 123 MeV/u

Yield of 45Cr / incident 46Cr: 1.7 \cdot 10$^{-4}$ (3.55 mb, 0.17 pps)
Yield of 45Cr / all nuclei: 4.4 \cdot 10$^{-3}$ (without 46Cr)
Yield of 45Cr / isotopes of Cr: 0.98 (without 46Cr)

Estimated pγ rate for 45Cr (3% γ efficiency, 100% state population): 18 per hour
Some additional information

<table>
<thead>
<tr>
<th>Nucleus of interest</th>
<th>Intermediate fragment</th>
<th>Yield of intermediate fragment at S4 / incident 58Ni</th>
<th>Beam intensity of 58Ni (limited by rate on detectors)</th>
<th>Estimated $p\gamma$ rate (3% γ efficiency, 100% state population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45Cr</td>
<td>46Cr</td>
<td>$1 \cdot 10^{-6}$</td>
<td>$1 \cdot 10^9$ pps</td>
<td>18 / h</td>
</tr>
<tr>
<td>45Sc</td>
<td>46Ti</td>
<td>$8 \cdot 10^{-4}$</td>
<td>$2.5 \cdot 10^6$ pps</td>
<td>440 / h</td>
</tr>
<tr>
<td>53Ni</td>
<td>54Ni</td>
<td>$8 \cdot 10^{-7}$</td>
<td>$1 \cdot 10^9$ pps</td>
<td>10 / h</td>
</tr>
<tr>
<td>53Mn</td>
<td>54Fe</td>
<td>$3 \cdot 10^{-3}$</td>
<td>$6.3 \cdot 10^5$ pps</td>
<td>580 / h</td>
</tr>
</tbody>
</table>

Slits:
S1 ± 10cm
S2 ± 10cm
S3 ± 10cm

Reaction target ± 3.5cm

Yield of all fragments / incident 58Ni after S1 slits: $3.2 \cdot 10^{-3}$ ($3.2 \cdot 10^6$ pps)
Yield of all fragments / incident 58Ni before SC21: $2.9 \cdot 10^{-3}$ ($2.9 \cdot 10^6$ pps)
Yield of all fragments / incident 58Ni before MUSIC at S4: $5.4 \cdot 10^6$ ($5.4 \cdot 10^3$ pps)
Yield of all fragments / incident 58Ni behind the reaction target: $5.0 \cdot 10^{-6}$ ($5.0 \cdot 10^3$ pps)

$Bp(D1) = 6.1711$ Tm
$Bp(D2) = 6.1717$ Tm
$Bp(D3) = 3.9892$ Tm
$Bp(D4) = 3.9899$ Tm
\[\text{TOF(S2−S4)/Z} \]

\[^{46} \text{Cr} \]
Experiment No. 3

A. Bracco et al.
Gamma-decay of the GDR in the exotic nucleus 68Ni via Coulomb excitation

<table>
<thead>
<tr>
<th>Nucleus of interest:</th>
<th>68Ni (GDR via Coullex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary beam:</td>
<td>86Kr 10^{10} pps</td>
</tr>
<tr>
<td>Production target:</td>
<td>9Be 4 g/cm2</td>
</tr>
<tr>
<td></td>
<td>$d \over R$ = 0.26</td>
</tr>
</tbody>
</table>

First stage 86Kr \rightarrow 68Ni:

Secondary beam:	68Ni
	584.0 MeV/u
Yield of 68Ni/incident 86Kr	9.5·10^{-6}
Charge states after prod. target	fully stripped

Al degrader at S1	6167.8 mg/cm2
Al degrader at S2	415.3 MeV/u
Charge states after degrader	fully stripped

| Energy at reaction target (S4) | 400.2 MeV/u |
| Charge states at target | fully stripped |

| Slits: |
| S1 = ± 1.5 cm |
| S2 = ± 6 cm |
| S3 = ± 1.6 cm |

| Transmission of 68Ni: |
At S1, after slits	40.1 %
At S2, after slits	26.2 %
At reaction target($\sigma_x(^{68}$Ni) = 0.70 cm)	24.5 %

| Yield of 68Ni at S4/all fragments: | 0.22 |

| Yield of 68Ni at S4/incident 86Kr | 2.3·10^{-6} (2.3·10^{4} pps) |

Second stage 68Ni \rightarrow 68Ni*:

Reaction target at S4 208Pb	2 g/cm2
Energy of 68Ni behind the reaction target:	362.0 MeV/u
Yield of 68Ni*(Coullex)/incident 68Ni	3.5·10^{-3} (high energy part: 600 mb, 81 pps)
	8.7·10^{-4} (region of pygmy: 150 mb, 20 pps)

Estimated $p\gamma$ rate in BaF$_2$ detectors (5 - 13 MeV Energy, (1.1 % γ eff. at 10 MeV)) : 64 hr.$^{-1}$

Estimated $p\gamma$ rate in Ge detectors (15 - 17 MeV Energy, (0.4 % γ eff. at 15 MeV)) : 6 hr.$^{-1}$
Some additional information for FRS setting

Slits:
S1 = ± 1.5 cm
S2 = ± 6 cm
S3 = ± 1.6 cm

Reaction target = ± 3.5 cm (max.)

Yield of all fragments / incident particle before SC21: 5.1·10^{-4} (5.1·10^{6})
Yield of all fragments / incident particle before MUSIC at S4: 1.0·10^{-5} (1.0·10^{5})

B\rho(D1) = 9.6691 Tm
B\rho(D2) = 9.6746 Tm
B\rho(D3) = 7.8722 Tm
B\rho(D4) = 7.8716 Tm
Figure 1: Position spectrum at S4 for 68Ni setting

Figure 2: Time-of-flight vs Position plot for 68Ni setting
Experiment #4

H. Grawe et al.:
Relativistic Coulex in N=28-34 and N=40-50 nuclei

Nucleus of interest: 50Ca

Primary beam: 82Se 10^8 pps 400 MeV/u
Production target: 9Be 2 g/cm2 d/R=0.3

First step 82Se → 50Ca:
Secondary beam: 50Ca 330 MeV/u
Yield of 50Ca / incident particle: $5 \cdot 10^{-7}$ (4.8 10^{-3} mb)
Charge states after production target: fully stripped

Al degrader at S1: -
Al degrader at S2: 7200 mg/cm2 130 MeV/u
Charge states after degraders: fully stripped

Energy at reaction target (S4): 108 MeV/u
Charge states at reaction target (S4): fully stripped

Slits:
S1 ± 10cm (open)
S2 ± 10cm (open)
S3 ± 10cm (open)

Transmission of 50Ca:
Yield / incident particle:
At S1 after slits: 67 % $3.5 \cdot 10^{-7}$
At S2 after slits: 25 % $1.3 \cdot 10^{-7}$
At reaction target: ($\sigma_x^{(50}\text{Ca}) = 2$ cm) 14 % $7.4 \cdot 10^{-8}$

Yield of 50Ca at S4 / all fragments: 0.19

Yield of 50Ca at S4/ incident particle $7.4 \cdot 10^{-8}$ (74 pps)

Second step 50Ca → 50Ca(2$^+$):
Reaction target at S4: 208Pb 1000 mg/cm2 d/R= 0.5

Energy of 50Ca behind the reaction target: 78 MeV/u

Yield of 50Ca(2$^+$) / incident 50Ca: $5 \cdot 10^{-4}$ (250 mb, 0.04 pps)
Yield of 50Ca(2$^+$) / isotopes of Ca (products of 50Ca+208Pb reaction): 0.43

Estimated γ rate for 50Ca(2$^+$) (3% γ efficiency at 1.3 MeV): 4 /h
Some additional information for FRS setting

Slits:
S1 ± 10cm
S2 ± 10cm
S3 ± 10cm

Reaction target ± 3.5cm

Yield of all fragments / incident particle before SC21: \(5 \cdot 10^{-5} \) (5 \(\times \) 10^4 pps)
Yield of all fragments / incident particle before MUSIC at S4: \(4 \cdot 10^{-7} \) (4 \(\times \) 10^2 pps)

\[B_p(D1) = 7.0840 \text{ Tm} \]
\[B_p(D2) = 7.0888 \text{ Tm} \]
\[B_p(D3) = 4.2318 \text{ Tm} \]
\[B_p(D4) = 4.2313 \text{ Tm} \]
400 MeV/u ^{82}Se on 2g/cm2 ^{9}Be

^{50}Ca - setting $D/R = 0.78$
400 MeV/u 82Se on 2g/cm2 9Be

50Ca – setting D/R = 0.78

TOF (S2-S4) vs Z

48Ar

49K

50Ca

51Sc

52Ti
Experiment #4

H. Grawe et al.:
Relativistic Coulex in N=28-34 and N=40-50 nuclei

Nucleus of interest: ^{66}Fe

Primary beam: ^{82}Se 109 pps 400 MeV/u
Production target: ^{9}Be 2 g/cm2 d/R=0.3

First step $^{82}\text{Se}\rightarrow^{66}\text{Fe}$:

Secondary beam: ^{66}Fe 331 MeV/u
Yield of ^{66}Fe / incident particle 3·10$^{-7}$ (3.0·10$^{-3}$ mb)
Charge states after production target: fully stripped

Al degrader at S1: -
Al degrader at S2: 5000 mg/cm2 154 MeV/u d/R=0.70
Charge states after degraders: fully stripped

Energy at reaction target (S4): 130 MeV/u
Charge states at reaction target (S4): fully stripped

Slits:
S1 ± 10cm (open)
S2 ± 10cm (open)
S3 ± 10cm (open)

Transmission of ^{66}Fe:
At S1 after slits: 94 % 3.0·10$^{-7}$
At S2 after slits: 47 % 1.5·10$^{-7}$
At reaction target: ($\sigma_x(^{66}\text{Fe}) = 1.7$ cm) 34 % 1.1·10$^{-7}$

Yield of ^{66}Fe at S4 / all fragments: 0.23

Yield of ^{66}Fe at S4 / incident particle 1.1·10$^{-7}$ (110 pps)

Second step $^{66}\text{Fe} \rightarrow^{66}\text{Fe}(2^+)$:

Reaction target at S4: ^{208}Pb 1000 mg/cm2 d/R= 0.4

Energy of ^{50}Ca behind the reaction target: 96 MeV/u

Yield of $^{66}\text{Fe}(2^+)$ behind the reaction target / incident ^{66}Fe: 1.7·10$^{-3}$ (580 mb, 0.19 pps)
Yield of ^{66}Fe / isotopes of Fe (products of $^{66}\text{Fe}+^{208}\text{Pb}$ reaction): 0.55

Estimated γ rate for ^{66}Fe (3% γ efficiency): 21 /h
Some additional information for FRS setting

Reaction target ± 3.5cm

Yield / incident particle
Yield of all fragments before SC21: \(4 \cdot 10^{-5}\) (4 x10⁴ pps)
Yield of all fragments before MUSIC at S4: \(4 \cdot 10^{-7}\) (4 x10² pps)

\[B_{\rho}(D1) = 7.2085 \text{ Tm} \]
\[B_{\rho}(D2) = 7.2098 \text{ Tm} \]
\[B_{\rho}(D3) = 4.7232 \text{ Tm} \]
\[B_{\rho}(D4) = 4.7248 \text{ Tm} \]

\[6\text{Fe} \text{ setting} \]
\[\text{Se} 400 \text{ MeV/u on } ^{2}\text{Be} 2\text{g/cm}^2, \text{S2 Deg. } 5\text{g/cm}^2 \text{ D/R} = 0.75, \text{slits open} \]
Experiment #4

H. Grawe et al.:
Relativistic Coulex in N=28-34 and N=40-50 nuclei

Nucleus of interest: ^{82}Ge

Primary beam: ^{86}Kr 10^9 pps 450 MeV/u
Production target: ^9Be 2 g/cm²

First step $^{86}\text{Kr}\rightarrow^{82}\text{Ge}$:

Secondary beam: ^{82}Ge 380 MeV/u
Yield of ^{82}Ge / incident particle $1 \cdot 10^{-7}$ ($1 \cdot 10^{-3}$ mb)
Charge states after production target: fully stripped

Al degrader at S1: -
Al degrader at S2: 5375 mg/cm² 162 MeV/u
Charge states after degraders: fully stripped

Energy at reaction target (S4): 133 MeV/u
Charge states at reaction target (S4): fully stripped

Slits:
S1 ± 10cm (open)
S2 ± 10cm (open)
S3 ± 10cm (open)

Transmission of ^{82}Ge:
At S1 after slits: 100 %
Yield / incident particle: $1.0 \cdot 10^{-7}$
At S2 after slits: 68 %
Yield / incident particle: $7.2 \cdot 10^{-8}$
At reaction target: ($\sigma_x^{82}\text{Ge} = 1.6$ cm) 59 %
Yield / incident particle: $6.2 \cdot 10^{-8}$

Yield of ^{82}Ge at S4 / all fragments: 0.15

Yield of ^{82}Ge at S4/ incident particle $6.2 \cdot 10^{-8}$ (62 pps)

Second step $^{82}\text{Ge} \rightarrow^{82}\text{Ge}(2^+)$:

Reaction target at S4: ^{208}Pb 200 mg/cm²
Energy of ^{82}Ge behind the reaction target: 91 MeV/u

Yield of $^{82}\text{Ge}(2^+)$ / incident ^{82}Ge: $8 \cdot 10^{-4}$ (290 mb, 0.05 pps)
Yield of $^{82}\text{Ge}(2^+)$ / isotopes of Ge (products of $^{82}\text{Ge}+^{208}\text{Pb}$ reaction): 0.38

Estimated γ rate for $^{82}\text{Ge}(2^+)$ (3% γ efficiency at 1.3 MeV): 5 /h
Some additional information for FRS setting

Slits:
S1 ± 10cm
S2 ± 10cm
S3 ± 10cm

Reaction target ± 3.5cm

Yield of all fragments / incident particle before SC21: $5 \cdot 10^{-6}$ (5 10^3 pps)
Yield of all fragments / incident particle before MUSIC at S4: $4 \cdot 10^{-7}$ (4 10^2 pps)

$B_{\rho}(D1) = 7.8910$ Tm
$B_{\rho}(D2) = 7.8910$ Tm
$B_{\rho}(D3) = 4.9000$ Tm
$B_{\rho}(D4) = 4.9000$ Tm
450 MeV/u 86Kr on 2g/cm2 9Be
82Ge — setting D/R = 0.73
450 MeV/u 86Kr on 2 g/cm² 9Be

82Ge - setting D/R = 0.73
Experiment #5

D. Tonev et al.: Investigation of the origin of mixed-symmetry states using relativistic COULEX of N=52 isotones

Nucleus of interest: 88Kr (fission, Coulomb excitation)

Primary beam: 238U 109 pps 750 MeV/u
Production target: 9Be 1416 mg/cm2

First step 238U → 88Kr:
Secondary beam: 88Kr 744 MeV/u
Yield of 88Kr / incident 238U: 2.1 · 10$^{-3}$ (26 mb)
Charge states after production target: fully stripped

Al degrader at S1: 7500 mg/cm2
Al degrader at S2: 8000 mg/cm2
173 MeV/u
Charge states after degraders: fully stripped

Energy at reaction target (S4): 140 MeV/u
Charge states at reaction target (S4): fully stripped

Slits:
S1 ± 10 cm (open)
S2 ± 10 cm (open)
S3 ± 10 cm (open)

Transmission of 88Kr:
At S1 after degrader: 3.8 % 8.0 · 10$^{-5}$
At S2 after degrader: 0.39 % 8.2 · 10$^{-6}$
Total at S4: (σ(88Kr) = 2.1 cm) 0.27 % 5.7 · 10$^{-6}$

Yield of 88Kr at S4 / all fragments: 0.36

Yield of 88Kr at S4 / incident 238U: 5.7 · 10$^{-6}$ (5700 pps)

Second step 88Kr → 88Kr(2$^+$):
Reaction target at S4: 208Pb 400 mg/cm2
Energy of 88Kr behind the reaction target: 122 MeV/u

Yield of 88Kr(2$^+$) / incident 88Kr: 3.2 · 10$^{-4}$ (200 mb, 1.8 pps)
Yield of 88Kr(2$^+$) / incident 88Kr: 8.0 · 10$^{-5}$ (50 mb, 0.46 pps)

Estimated γ rate (3% γ efficiency):
for 88Kr(2$^+$) 194 per hour
for 88Kr(2$^+$) 50 per hour
Some additional information

The fission cross section for 86Se is 0.910 mb compared to 26 mb for 88Kr.

Slits:
S1 ± 10cm
S2 ± 10cm
S3 ± 10cm

Reaction target ± 3.5cm

Yield of all fragments / incident 238U after S1 degrader: $6.1 \cdot 10^{-3}$ ($6.1 \cdot 10^6$ pps)
Yield of all fragments / incident 238U before SC21: $8.8 \cdot 10^{-4}$ ($8.8 \cdot 10^5$ pps)
Yield of all fragments / incident 238U before MUSIC at S4: $2.6 \cdot 10^{-5}$ ($2.6 \cdot 10^4$ pps)
Yield of all fragments / incident 238U behind the reaction target: $2.5 \cdot 10^{-5}$ ($2.5 \cdot 10^4$ pps)

$B_p(D1) = 10.648$ Tm
$B_p(D2) = 8.9225$ Tm
$B_p(D3) = 4.8265$ Tm
$B_p(D4) = 4.8251$ Tm
Experiment #6

C. Fahlander et al.:
Relativistic Coulomb excitation of nuclei near \(^{100}\text{Sn}\)

Nucleus of interest: \(^{104}\text{Sn}\)

Primary beam: \(^{124}\text{Xe}\) 10\(^9\) pps 550 MeV/u
Production target: \(^9\text{Be}\) 4 g/cm\(^2\) d/R=0.56

First step \(^{124}\text{Xe} \rightarrow \^{104}\text{Sn}\):

Secondary beam: \(^{104}\text{Sn}\) 309 MeV/u
Yield of \(^{104}\text{Sn}\) / incident particle 6.8 \cdot 10\(^{-7}\) (4.5 \cdot 10\(^{-3}\) mb)
Charge states after production target: fully stripped

Al degrader at S1: -
Al degrader at S2: 1560 mg/cm\(^2\) 155 MeV/u
Charge states after degraders: fully stripped
\{ d/R = 0.55 \}

Energy at reaction target (S4): 95 MeV/u
Charge states at reaction target (S4): fully stripped

Slits:
S1 ± 3cm
S2 ± 10cm (open)
S3 (-2;2.5)

Transmission of \(^{104}\text{Sn}\):
At S1 after slits: 87 % 6.0 \cdot 10\(^{-7}\)
At S2 after slits: 73 % 5.0 \cdot 10\(^{-7}\)
At reaction target: (\(\sigma_x\)\(^{104}\text{Sn}\) = 1.7 cm) 55 % 3.7 \cdot 10\(^{-7}\)

Yield of \(^{104}\text{Sn}\) at S4 / all fragments: 0.06

Yield of \(^{104}\text{Sn}\) at S4 / incident particle 3.7 \cdot 10\(^{-7}\) (370 pps)

Second step \(^{104}\text{Sn} \rightarrow \^{104}\text{Sn}(2^+)\):

Reaction target at S4: \(^{208}\text{Pb}\) 200 mg/cm\(^2\) d/R= 0.26

Energy of \(^{104}\text{Sn}\) behind the reaction target: 77 MeV/u

Yield of \(^{104}\text{Sn}(2^+)\) / incident \(^{104}\text{Sn}\): 8 \cdot 10\(^{-5}\) (200 mb, 0.03 pps)
Yield of \(^{104}\text{Sn}(2^+)\) / isotopes of Sn (products of \(^{104}\text{Sn}+^{208}\text{Pb}\) reaction): 0.92

Estimated \(\gamma\) rate for \(^{104}\text{Sn}(2^+)\) (3\% \(\gamma\) efficiency at 1.3 MeV): 3 /h
Some additional information for FRS setting

Slits:
S1 ± 3 cm
S2 ± 10 cm
S3 (-2;2.5) cm

Reaction target ± 3.5cm

Yield of all fragments / incident particle before SC21: $1.5 \cdot 10^{-4} (1.5 \times 10^5 \text{ pps})$
Yield of all fragments / incident particle before MUSIC at S4: $6.4 \cdot 10^{-6} (6.4 \times 10^3 \text{ pps})$

Yield with slits open (all frag./ip before SC21): $1.7 \cdot 10^{-4} (1.7 \cdot 10^5)$
Yield with slits open (all frag./ip before MUSIC at S4): $1.2 \cdot 10^{-5} (1.2 \cdot 10^4)$
Transmission of ^{104}Sn with open slits: 63%

$Bp(D1) = 5.6856 \text{ Tm}$
$Bp(D2) = 5.6875 \text{ Tm}$
$Bp(D3) = 3.8845 \text{ Tm}$
$Bp(D4) = 3.8842 \text{ Tm}$
550 MeV/u 124Xe on 4g/cm2 9Be
104Sn – setting D/R = 0.55
$550 \text{ MeV/u } ^{124}\text{Xe on } 4\text{g/cm}^2 \ ^9\text{Be}$

$^{104}\text{Sn} - \text{setting}$

$D/R = 0.55$

TOF (S2-S4) vs Z
Experiment #6

C. Fahlander et al.:
Relativistic Coulomb excitation of nuclei near 108Sn

Nucleus of interest: 108Sn
Primary beam: 124Xe 10⁹ pps 600 MeV/u
Production target: 9Be 4 g/cm²

First step 124Xe \rightarrow 108Sn:
Secondary beam: 108Sn 377 MeV/u
Yield of 108Sn / incident particle: 5.0×10^{-4} (3 mb)
Charge states after production target: fully stripped
Al degrader at S1: 1770 mg/cm² 263 MeV/u
Al degrader at S2: 930 mg/cm² 158 MeV/u
Charge states after degraders: fully stripped
Energy at reaction target (S4): 101 MeV/u
Charge states at reaction target (S4): fully stripped

Slits:
S1 ± 0.4 cm
S2 ± 3.0 cm
S3 ± 10 cm (open)

Transmission of 108Sn:
At S1 after slits: 24 % 1.2 \times 10⁻⁴
At S2 after slits: 9 % 4.4 \times 10⁻⁵
At reaction target ($\sigma_x(^{108}$Sn) = 1.7 cm): 8 % 4.0 \times 10⁻⁵

Yield of 108Sn at S4 / all fragments: 0.57

<table>
<thead>
<tr>
<th>Yield of 108Sn at S4/ incident particle</th>
<th>4.0 \times 10⁻⁵</th>
<th>(4 \times 10⁴ pps)</th>
</tr>
</thead>
</table>

Second step 108Sn \rightarrow 108Sn(2⁺):
Reaction target at S4: 208Pb 200 mg/cm²
Energy of 108Sn behind the reaction target: 85 MeV/u

Yield of 108Sn(2⁺) / incident 108Sn: 1×10^{-4} (200 mb, 4.6 pps)
Yield of 108Sn(2⁺) / isotopes of Sn (products of 108Sn+208Pb reaction): 0.87

Estimated γ rate for 108Sn(2⁺) (3% γ efficiency at 1.3 MeV): 490 /h
Some additional information for FRS setting

Slits:
S1 ± 0.4 cm
S2 ± 3.0 cm
S3 ± 10 cm (open)

Reaction target ± 3.5cm

Yield of all fragments / incident particle before SC21: \(5 \cdot 10^{-4} (5 \times 10^5 \text{ pps})\)
Yield of all fragments / incident particle before MUSIC at S4: \(7 \cdot 10^{-5} (7 \times 10^4 \text{ pps})\)

Yield with slits open (all frag./ip before SC21): \(6 \cdot 10^{-3} (6 \times 10^6)\)
Yield with slits open (all frag./ip before MUSIC at S4): \(10^{-3} (10^6)\)
Transmission of \(^{108}\text{Sn}\) with open slits: 40%

\[B_p(D1) = 6.6177 \text{ Tm}\]
\[B_p(D2) = 5.3945 \text{ Tm}\]
\[B_p(D3) = 4.0742 \text{ Tm}\]
\[B_p(D4) = 4.0742 \text{ Tm}\]
600 MeV/u 124Xe on 4g/cm2 9Be

108Sn – setting

D/R = 0.67
600 MeV/u 124Xe on 4g/cm2 9Be 108Sn –setting D/R = 0.67
Experiment No. 7

G. de Angelis et al.
Nuclear magicity at Z \sim 50 N \sim 82 investigated through knock-out reaction of 132Sn

Nucleus of interest: 132Sn (Fission fragment, knock-out)
Primary beam: 238U 1×10^8 pps 700 MeV/u \(\frac{Q}{R} = 0.15 \)
Production target: 208Pb 1.5 g/cm2

First stage 238U \rightarrow 132Sn:

Secondary beam: 132Sn 596.5 MeV/u
Yield of 132Sn/incident 238U 6.8 \times 10$^{-5}$ fully stripped 15.4 mb (lit.)
Charge states after prod. target

Al degrader at S1
Al degrader at S2 6183.9 mg/cm2 300.5 MeV/u \(\frac{Q}{R} = 0.65 \)
Charge states after degrader fully stripped

Energy at reaction target (S4)
Charge states at target 270.9 MeV/u fully stripped

Slits:
S1 = \pm 2 cm
S2 = \pm 3 cm
S3 = \pm 10 cm

Transmission of 132Sn:
At S1, after slits 5.9 \% 4.2 \times 10$^{-6}$
At S2, after slits 1.6 \% 1.1 \times 10$^{-6}$
At reaction target (\(\sigma_x^{132}\text{Sn} = 0.92 \text{ cm} \)) 1.2 \% 8.8 \times 10$^{-7}$

Yield of 132Sn at S4/all fragments: 0.05 (transmission only)

| Yield of 132Sn at S4/incident 238U | 8.8×10^{-7} | (8.8×10^1 pps) |

Second stage 132Sn \rightarrow 131Sn$^+$:

Reaction target at S4 9Be 1 g/cm2 270.8 MeV/u \(\frac{Q}{R} = 0.34 \)
Energy of 131Sn behind the reaction target: 264.8 MeV/u

Yield of 131Sn/incident 132Sn 6.7 \times 10$^{-3}$ 100 mb, 0.59 pps
Yield of 131Sn$^+$(l=2, 3S$^+_4$)/incident 132Sn 6.0 \times 10$^{-4}$ 9 mb, 0.05 pps

Estimated p\(\gamma\) rate for 131Sn (2.7 \% \(\gamma\) eff. at 1.3 MeV)) : 57 hr.$^{-1}$
Estimated p\(\gamma\) rate for 131Sn (l=2, 3S$^+_4$) (2.7 \% \(\gamma\) eff. at 1.3 MeV)) : 10 hr.$^{-1}$
Some additional information for FRS setting

Slits:
S1 = ± 2.0 cm
S2 = ± 3.0 cm
S3 = ±10.0 cm

Reaction target = ± 3.5 cm (max.)

Yield of all fragments / incident particle before SC21 : 5.1·10^{-4} (5.1·10^6)
Yield of all fragments / incident particle before MUSIC at S4 : 1.0·10^{-5} (1.0·10^5)

B_\rho(D1) = 10.6867 Tm
B_\rho(D2) = 10.6839 Tm
B_\rho(D3) = 7.0973 Tm
B_\rho(D4) = 7.0974 Tm
Figure 1: Position spectrum at S4 for 132Sn setting (only transmission).

Figure 2: Mass vs z plot for 132Sn setting (only transmission).
Experiment No. 8

A. Maj et al.
Coulomb excitation at intermediate energies - Angular distribution and particle - γ angular correlation measurement

Nucleus of interest: 132Xe (Coulex)
Primary beam: 132Xe 105 pps 160 MeV/u
Production target: None

First stage 132Xe \rightarrow 132Xe:

Secondary beam: 132Xe 158.8 MeV/u
Yield of 132Xe/incident 132Xe
Charge states after prod. target Not applicable
Al degrader at S1 none
Al degrader at S2 none
Charge states after degrader not applicable
Energy at reaction target (S4) 105.3 MeV/u
Charge states after target fully stripped

Slits:
S1 = \pm 10 cm
S2 = \pm 10 cm
S3 = \pm 10 cm

Transmission of 68Ni:
At S1, after slits 99.9 %
At S2, after slits 99.9 %
At reaction target (σ_x(132Xe) = 1.1 cm) 99.5 % σ_n = 5.0 mrad

Yield/incident particle:

Yield of 132Xe at S4/incident 132Xe ~ 1 (105 pps)

Second stage 132Xe \rightarrow 132Xe*:

Reaction target at S4 208Pb 50 mg/cm2 105.3 MeV/u $\frac{d}{R} = 0.05$
Energy of 132Xe behind the reaction target: 97.2 MeV/u
Yield of 132Xe$^*(2^+)/$incident 132Xe 7.2\cdot10$^{-5}$ (500 mb, 7 pps)

Estimated $p\gamma$ rate for 132Xe (2.7 % γ eff. at 1.3 MeV) : 703 hr.$^{-1}$
Some additional information for FRS setting

Slits :
S1 = ± 10 cm
S2 = ± 10 cm
S3 = ± 10 cm

Reaction target = ± 3.5 cm (max.)

Yield of all fragments / incident particle before SC21 : 1 (1.10^5)
Yield of all fragments / incident particle before MUSIC at S4 : 1(1.0·10^5)

B_ρ(D1) = 4.6174 Tm
B_ρ(D2) = 4.6174 Tm
B_ρ(D3) = 4.6174 Tm
B_ρ(D4) = 4.6174 Tm
Figure 1: Position spectrum at S4 for 132Xe Primary beam
Experiment No. 9

K.-H. Speidel et al.
Magnetic moments of Xenon and tellurium isotopes near doubly-magic \(^{132}\)Sn at relativistic beam energies.

Nucleus of interest: \(^{134}\)Te (Coulex)
Primary beam: \(^{136}\)Xe \(1 \times 10^9\) pps
Production target: \(^9\)Be 2.5 g/cm\(^2\)
\[\frac{d}{R} = 0.37\]

First stage \(^{136}\)Xe \(\rightarrow\) \(^{134}\)Te:

Secondary beam: \(^{134}\)Te 370.7 MeV/u
Yield of \(^{134}\)Te/incident \(^{136}\)Xe \(4.5 \times 10^{-5}\)
Charge states after prod. target fully stripped
Al degrader at S1
Al degrader at S2 3121.9 mg/cm\(^2\) 150.6 MeV/u \(\frac{d}{R} = 0.75\)
Charge states after degrader \(Q_2 = 0.85\)
\(Q_1 = 0.14\)
Energy at reaction target (S4)
Charge states at reaction target 100.0 MeV/u
\(Q_2 = 0.85\)

Slits:
\(S1 = \pm 1\) cm
\(S2 = \pm 3\) cm
\(S3 = \pm 10\) cm

Transmission of \(^{134}\)Te:
At S1, after slits 67.8 %
At S2, after slits 48.2 %
At reaction target (\(\sigma^{(134}\)Te) = 1.5 cm) 45.0 %

Yield of \(^{134}\)Te at S4/all fragments: 0.91

| Yield of \(^{134}\)Te at S4/incident \(^{136}\)Xe | \(2.0 \times 10^{-5}\) | \((2.0 \times 10^4\) pps) |

Second stage \(^{134}\)Te \(\rightarrow\) \(^{134}\)Te\(^+\):

Reaction target at S4 \(^{208}\)Pb 50 mg/cm\(^2\)
Energy of \(^{134}\)Te behind the reaction target: 96.6 MeV/u \(\frac{d}{R} = 0.05\)
Yield of \(^{134}\)Te\(^+\)(\(^2\)+)/incident \(^{134}\)Te \(4.3 \times 10^{-5}\)
Yield of \(^{134}\)Te\(^+\)(\(^2\)+)/incident \(^{134}\)Te \(300\) mb, 0.9 pps

Estimated \(p\gamma\) rate for \(^{134}\)Te (\(^2\)+) (3.0 % \(\gamma\) eff. at 1.3 MeV)) : 94 hr.\(^{-1}\)
Some additional information for FRS setting

Slits:
S1 = ± 1 cm
S2 = ± 3 cm
S3 = ±10 cm

Reaction target = ± 3.5 cm (max.)

Yield of all fragments / incident particle before SC21 : 7.9·10⁻⁵ (7.9·10⁴)
Yield of all fragments / incident particle before MUSIC at S4 : 2.8·10⁻⁵ (2.8·10⁴)

\[B\rho(D1) = 7.8165 \text{ Tm} \]
\[B\rho(D2) = 7.8165 \text{ Tm} \]
\[B\rho(D3) = 4.7314 \text{ Tm} \]
\[B\rho(D4) = 4.7314 \text{ Tm} \]

Additional information for g-factor measurement

Ferromagnetic material : Gadolinium (50 mg/cm²)
External magnetic field : ~ 0.08 Tesla
Expected Transient magnetic Field (TF) : 23 kTesla (p₁₃=0.03, q₁₃=0.5)
Expected precession angle (\(\Phi_{exp}(2^+)\)) : 240 mrad
Count rate for both field direction (Up/Dn) : 10 hr⁻¹ (1.0 % γ eff.)
Figure 1: Position spectrum at Si for ^{134}Te setting

Figure 2: Time-of-flight vs energy loss in Music plot for ^{134}Te setting
Experiment No. 10

S. Mandal et al.
Search for stable octupole deformation in neutron-rich of $^{142-144}$Ba using relativistic Coulomb excitation.

Nucleus of interest: 142Ba (Coul ex)
Primary beam: 150Nd, 5×10^8 pps
Production target: 9Be, 4.0 g/cm2

First stage 150Nd \rightarrow 142Ba:

<table>
<thead>
<tr>
<th>Secondary beam:</th>
<th>142Ba</th>
<th>382.9 MeV/u</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield of 142Ba/incident 150Nd</td>
<td>7.7×10^{-6}</td>
<td>0.06 mb (EPAX2)</td>
</tr>
<tr>
<td>Charge states after prod. target</td>
<td>fully stripped</td>
<td></td>
</tr>
<tr>
<td>Al degrader at S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al degrader at S2</td>
<td>2450.0 mg/cm2</td>
<td>198.0 MeV/u</td>
</tr>
<tr>
<td>Charge states after degrader</td>
<td>$\frac{d}{R} = 0.63$</td>
<td></td>
</tr>
<tr>
<td>Energy at reaction target (S4)</td>
<td>153.0 MeV/u</td>
<td></td>
</tr>
<tr>
<td>Charge states at reaction target</td>
<td>$Q_e=0.86$</td>
<td></td>
</tr>
</tbody>
</table>

Slits:
- S1 = -1.0, +2 cm
- S2 = ± 3.5 cm
- S3 = -2.7, +2.4 cm

Transmission of 142Ba:
- At S1, after slits: 44.7 %
- At S2, after slits: 24.8 %
- At reaction target ($\sigma_x(^{142}$Ba) = 1.1 cm): 23.4 %

Yield of 142Ba at S4/all fragments: 0.12

<table>
<thead>
<tr>
<th>Yield of 142Ba at S4/incident 150Nd</th>
<th>1.8×10^{-6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield/incident particle:</td>
<td>3.5×10^{-6}</td>
</tr>
</tbody>
</table>

Second stage 142Ba \rightarrow 142Ba*:

<table>
<thead>
<tr>
<th>Reaction target at S4</th>
<th>208Pb</th>
<th>300 mg/cm2</th>
<th>153.0 MeV/u</th>
<th>$\frac{d}{R} = 0.17$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy of 142Ba behind the reaction target</td>
<td></td>
<td></td>
<td>134.8 MeV/u</td>
<td></td>
</tr>
<tr>
<td>Yield of 142Ba$^*(3^-)$/incident 142Ba</td>
<td>6.1×10^{-6}</td>
<td>7.0 mb, 0.06 pps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimated pγ rate for 142Ba (3$^-$) (3.0 % γ eff. at 1.3 MeV)): 6 hr.$^{-1}$
Some additional information for FRS setting

Slits:
S1 = -1,+2 cm
S2 = ± 3.5 cm
S3 = -2.7,+2.4 cm

Reaction target = ± 3.5 cm (max.)

Yield of all fragments / incident particle before SC21 : \(1.4 \times 10^{-4} \ (7.1 \times 10^5)\)
Yield of all fragments / incident particle before MUSIC at S4 : \(1.7 \times 10^{-5} \ (8.7 \times 10^4)\)

\[B\rho(D1) = 7.8391 \text{ Tm}\]
\[B\rho(D2) = 7.8391 \text{ Tm}\]
\[B\rho(D3) = 5.4024 \text{ Tm}\]
\[B\rho(D4) = 5.4023 \text{ Tm}\]
Figure 1: Position spectrum at S4 for 142Ba setting

Figure 2: Time-of-flight vs energy loss in MUSIC plot for 142Ba setting
Experiment #11

Zs. Podolyak, et al.:
Prompt gamma spectroscopy and isomer tagging.
Deformation of five-quasiparticle states in the A≈180 mass region

Nucleus of interest: 179W

Primary beam: 208Pb 10^8 pps 1GeV/u
Production target: 9Be 1.6g/cm2 d/R=0.13

Secondary beam 179W 897 MeV/u
Yield of 179W / incident 208Pb $4.23 \cdot 10^{-6}$ (0.952mb)(EPAXII:0.893 mb)
Charge states after prod. target fully stripped:74+(57.1%)
73+(33.5%)
72+(6.4%)

Al degrader at S1 -
Al degrader at S2 8500 mg/cm2 293.5 MeV/u d/R=0.76
Charge states after degraders fully stripped:74+(65.8%)
73+(30.6%)
72+(3.6%)

Energy at reaction target (S4) 234.5 MeV/u (74+)
Charge states at reaction target (S4) fully stripped:74+(100%)

Slits:
S1 \pm 15mm(open for 179W)
S2 \pm 40mm(open for 179W)
S3 \pm 15mm(open for 179W)

Transmission of 179W(fully stripped):
Yield / incident particle:
At S1 after slits 93.5 % 3.96 \cdot 10^{-5}
At S2 after slits 36.4 % 1.02 \cdot 10^{-5}
At S4 ($\sigma_{x}(^{179}$W) = 1.5 cm) 32.5 % 0.85 \cdot 10^{-5}

Yield of 179W at S4 / all fragments 0.23

Yield of 179W at S4 / incident 208Pb 8.5 \cdot 10^{-6} (8.5 \cdot 10^2 pps)

Yield of I=35/2- isomer at S4(2.7%) 23.0/s

Second step: coulomb excitation

Reaction target at S4 208Pb (300 mg/cm2) d/R=0.12
Energy of 179W behind the reaction target: 215.2 MeV/u
Yield of 179W(37/2-)/incident 179W(35/2-): $2'10^{-3}$ (2327mb)
Yield of 179W(39/2-)/incident 179W(35/2-): $1'10^{-4}$ (123mb)
Estimated p γ rate for 179W(37/2-)(3% γ efficiency &10% tagging efficiency): 0.5/h
Estimated p γ rate for 179W(39/2-)(3% γ efficiency &10% tagging efficiency): 2.5 \cdot 10^{-2}/h
Some additional information for FRS setting

Slits:
S1 ± 15mm
S2 ± 40mm
S3 ± 15mm

Reaction target ± 35mm

Yield of all fragments/ incident 208Pb after S1 slits: 2.9 · 10^5
Yield of all fragments/ incident 208Pb before SC21: 2.9 · 10^5
Yield of all fragments/ incident 208Pb before MUSIC at S4: 3.6 · 10^3
Yield of all fragments/ incident 208Pb behind the reaction target: 2.5 · 10^3

$B_p(D1) = 12.7$ Tm
$B_p(D2) = 12.7$ Tm
$B_p(D3) = 6.4$ Tm
$B_p(D4) = 6.4$ Tm
$^{208}\text{Pb} 1000.0 \text{ MeV/u} + \text{Be} (1600 \text{ mg/cm}^2)$; Settings on ^{179}W $^{74+}^{74+}^{74+}^{74+}$; Config: DSWMDMMVVWVSDMDSMMSMMS

$\text{dp/p}=1.24\%$; Wedges: 0, Al (8500 mg/cm2), 0, 0, 0; Brho(Tm): 12.7396, 12.7396, 6.5086, 6.5086

All charge states
X distribution before coulomb excitation target
Experiment No. 12

J. Gerl et al.
Investigation of the structure and deformation of $^{185-187}$Pb by γ-spectroscopy and lifetime measurements.

Nucleus of interest: 186Pb (2 step fragmentation)
Primary beam: 238U $5 \cdot 10^8$ pps 600 MeV/u
Production target: 9Be 1.6 g/cm2 \(\frac{d}{R} = 0.3 \)

First stage 238U \rightarrow 200Rn:

Secondary beam: 200Rn 443.0 MeV/u
Yield of 200Rn/incident 238U 1.6 \cdot 10$^{-4}$ 2.06 mb (EPAX2)
Charge states after prod. target Q_1=0.56, Q_2=0.36, Q_3=0.07
Al degrader at S1 986.6 mg/cm2 442.9 MeV/u
Al degrader at S2 807.2 mg/cm2 359.2 MeV/u \(\frac{d}{R} = 0.63 \)
Charge states after degrader Q_1=0.16, Q_2=0.46, Q_3=0.37
Energy at reaction target (S4) 153.8 MeV/u
Charge states after reaction target Q_3=0.04

Slits:
S1 = \pm 1.0 cm
S2 = \pm 3.0 cm
S3 = \pm 10. cm

Transmission of 200Rn:
At S1, after slits 32.6 %
At S2, after slits 3.5 %
At reaction target ($\sigma_{\gamma}(^{200}$Rn) = 1.1 cm) 3.3 %
Yield/incident particle: 5.2 \cdot 10$^{-5}$
Yield/incident particle: 5.4 \cdot 10$^{-6}$
Yield/incident particle: 5.3 \cdot 10$^{-6}$

Yield of 200Rn at S4/all fragments: 0.02

Yield of 200Rn at S1/incident 238U 5.3 \cdot 10$^{-6}$ (2.6 \cdot 103 pps)

Second stage 200Rn \rightarrow 186Pb:

Reaction target at S4 27Al 500 mg/cm2 153.0 MeV/u \(\frac{d}{R} = 0.67 \)
Energy of 200Rn behind the reaction target:
Yield of 186Pb/incident 200Rn 3.1 \cdot 10$^{-5}$ 67.8 MeV/u 2.9 mb, 0.08 pps
Yield of 186Pb/all nuclei 1.3 \cdot 10$^{-1}$
Yield of 186Pb/isotopes of Pb 2.0 \cdot 10$^{-2}$

Estimated γ rate for 186Pb (3.0 % γ eff. at 1.3 MeV)) : 9 hr.$^{-1}$
Some additional information

Yield of 185Pb/incident 200Rn: 1.3×10^{-5}, 1.2 mb, 0.03 pps

Estimated $p\gamma$ rate for 185Pb (3.0 % γ eff. at 1.3 MeV): 4 hr.$^{-1}$

Yield of 187Pb/incident 200Rn: 6.2×10^{-5}, 5.9 mb, 0.16 pps

Estimated $p\gamma$ rate for 186Pb (3.0 % γ eff. at 1.3 MeV): 18 hr.$^{-1}$

Slits:
- S1 = \pm 1.0 cm
- S2 = \pm 3.0 cm
- S3 = \pm 10. cm

Reaction target = \pm 3.5 cm (max.)

Yield of all fragments / incident particle before SC21: 1.6×10^{-3} (8.1 $\times 10^{5}$)

Yield of all fragments / incident particle before MUSIC at S4: 3.2×10^{-4} (1.7 $\times 10^{5}$)

$B\rho$(D1) = 7.8395 Tm
$B\rho$(D2) = 6.8409 Tm
$B\rho$(D3) = 5.2980 Tm
$B\rho$(D4) = 5.2979 Tm
Figure 1: Position spectrum at S4 for 200Rn setting

Figure 2: Time-of-flight vs Position plot for 200Rn setting.