Decay Studies of Exotic Nuclei using RISING and the GSI Fragment Separator

Spokesperson for the g-RISING collaboration: P.H.Regan GSI contacts: J. Gerl & H.J. Wollersheim

This proposal forms part of the 'Stopped Beam' RISING experimental campaign at GSI.

PARTICIPANTS

CENBG Bordeaux, France: B. Blank GSI-Darmstadt, Germany: J. Gerl, H.J. Wollersheim, F.Becker, H.Grawe, M.Gorska, P.Bednarczyk, N.Saitio, T.Saito IKP Koeln, Germany: J. Jolie, P.Reiter TU Munchen: R.Kruecken, T.Faestermann University of Camerino, Italy: D. Balabanski, K. Gladnishki, IFJ PAN Krakow, Poland: A.Maj Warsaw University, Poland: M.Pfűtzner Universidad Autonoma de Madrid, Spain: A. Jungclaus Universidad de Santiago de Compostela, Spain: D.Cortina Gil, J.Benlliure, T. Kurtukian Nieto IFIC Valencia, Spain: B. Rubio INFN-Legnaro, Italy: A. Gadea, G.deAngelis, University of Surrey, UK: Zs.Podolyak, P.H.Regan, P.M.Walker, W.Gelletly, W.N.Catford, Z.Liu, S. Williams University of York, UK: M.A.Bentley, R.Wadsworth University of Brighton, UK: A.M.Bruce University of Manchester, UK: D.M.Cullen, S.J.Freeman University of Liverpool, UK: R.D.Page University of Edinburgh, UK: P.Woods, T.Davinson CLRC Daresbury, UK: J.Simpson, D.Warner Uppsala University, Sweden: H.Mach Lund University, Sweden: D.Rudolph Lawrence Berkeley National Lab, USA: R.M.Clark University of Notre Dame, USA: M. Wiescher, A.Aprahamian Debrecen, Hungary: A.Algora

for the STOPPED BEAM RISING COLLABORATION

<u>Abstract:</u> We will investigate new structures in exotic, heavy neutron-rich and N-Z nuclei formed following projectile fragmentation reactions using the Fragment Separator. The specific physics focus aims are:

- Investigating fundamental nuclear shell model interactions by identifying proton-hole states in the ²⁰⁸Pb double-magic closed shell;
- The evolution of nuclear dynamical symmetries (and related nuclear shapes) from the extreme 'singleparticle region' around ²⁰⁸Pb towards the 'valence maximum' nucleus, ¹⁷⁰Dy;
- The identification of isomeric states in proton-hole configurations in the ¹³²Sn doubly-closed core; and
- The study of isospin symmetry across the N=Z line.

The experimental technique involves the use of the FRagment Separator (FRS) at GSI to identify some of the most exotic, heavy nuclei synthesised to date. We will study the internal structure of these systems using γ -ray spectroscopy following: (i) the decay of metastable states (nuclear isomers) with lifetimes in the nano-to-millisecond time scale; and (ii) the β -decay of highly neutron-rich nuclei with ground state lifetimes in the seconds range. In both types of measurement, events will be time correlated with respect to the detection of individually identified nuclei at the final focus of the FRS. The capability for such experiments with fragments heavier than A~100 is unique to the FRS. The proposed experiments will use the high-efficiency RISING γ -ray array of CLUSTER germanium detectors, complemented by BaF₂ detectors (which provide the opportunity for fast timing measurements in specific cases) and a segmented silicon 'active stopper' for β -decay measurements.

BACKGROUND

A major thrust of nuclear structure research is to determine and understand how the shell structure of nuclei changes for systems with highly asymmetric proton-to-neutron ratios. The proposed research for this portion of the Stopped Beam RISING Experimental Campaign will exploit radioactive beams, produced using projectile-fragmentation reactions to enable the first study of a range of highly exotic, heavy, neutron-rich nuclei. These will take advantage of the existence of nano-to-millisecond isomers in these nuclei to enable the first spectroscopic information to be obtained (more details on this technique from GSI-FRS-based work can be found in references [1-6]). The relatively low intensities of the secondary radioactive beams in such experiments (typically less than 1 ion per second) can often preclude the use of γ -ray coincidence measurements that are needed to confirm the nuclear decay schemes. However, isomeric decays and measurements of decays following β -emission can provide the vital γ -ray 'fingerprints' which give the first glimpses of excited states and the internal structure of such nuclei. A systematic study of key experimental signatures, such as the energy of the first excited state and/or of the ratio of the excitation energies of the lowest-lying levels in even-even nuclei, can vividly demonstrate the erosion of the established magic numbers. This reveals both new regions of nuclear shell structure and the development of nuclear collective excitations. The current proposal aims to identify such fingerprints following radioactive-beam studies in selected exotic nuclei using isomer and β^- -delayed γ -ray detection.

Figure 1 shows the predicted ground state nuclear decay modes as predicted by the Moller-Nix mass model [8]. While a very wide range of exotic nuclei can be populated in projectile fragmentation, inbeam spectroscopy of such systems (as performed in the 'fast beam' part of the RISING Campaign) is limited by the total germanium singles counting rate at the production target for the secondary radioactive ions. For very weakly produced secondary nuclei, this limitation makes their spectroscopy impossible at the current time, using the in-beam technique. However, by using the Fragment Separator to select and transport the specific nuclei of interest to the final focal plane of the FRS, decays from both isomeric states [1-6] and following the radioactive decay of the daughter nuclei can be performed [7], allowing the first spectroscopic information on these highly exotic systems.

Figure 1: *Left:* Radioactive decay modes as predicted by the 2000 mass evaluation. *Right:* Schematic betadecay and isomer modes of decay to populate excited states in specific daughter nuclei.

The specific stopped beam proposal are presented following a meeting to discuss the specific physics aims of the Stopped Beam RISING campaign, which took place at the University of Surrey in March 2004 (see http://www.ph.surrey.ac.uk/~phs1pr/rising/stopped_workshop_04). Note that the proposals submitted in this, 'active stopper' phase of the stopped beam RISING campaign are complemented by the a series of proposals aimed at measuring gyromagnetic ratios of isomeric states using a similar, but not identical, set-up (see proposals by G.Neyens et al.,).

The **RISING** project

RISING (<u>Rare ISotope INvestigations at GSI</u>) is a major new, pan-European collaboration. Its physics aims are the studies of exotic nuclear matter with abnormal proton-to-neutron ratios compared with naturally occurring isotopes. RISING consists of fifteen high-efficiency CLUSTER germanium detectors to measure the γ -ray fingerprints that reveal the internal structure of these exotic nuclei. The RISING project is supported by an International *Memorandum of Understanding* between centres in the UK, Germany, France, Sweden, Denmark, Poland, Belgium and Italy. It is managed by an International Steering Committee, currently chaired by Prof. J. Jolie of the University of Cologne. The RISING project has three components which use (i) fast, (ii) stopped, and (iii) slowed-down radioactive ion beams produced following projectile-fragmentation reactions. The proposals presented in this campaign deal with the 'stopped-beam' aspect of the RISING project with particular focus on those experiments which aim to perform β -delayed spectroscopy using a pixellated silicon 'active' stopper.

These experiments require that fifteen high-efficiency CLUSTER germanium detectors are placed at the focal plane of the FRS where they will be used to measure γ rays following (i) β decay to excited states and also from (ii) the direct electromagnetic decay of metastable excited nuclear states in the particular nucleus of interest (see schematic in figure 1). In order to study the structure of the daughter nuclei following β decay, a position sensitive, silicon *active stopper* detector will be used. Both the exotic mother nuclei produced in fragmentation and the subsequent β particles following the decay to populate the daughter species, will be measured in a position sensitive single silicon detector. This will allow a temporal correlation with the incoming (mother) heavy-ion fragment and its subsequent β -delayed gamma-ray emssion (measured following the β -decay to a specific daughter nucleus). The use of microsecond isomeric states in specific nuclei will also be used to calibrate and check the fragment particle identification in these experiments [1-6,9]. Also, known β -decays will also be used to calibrate the system [10]. The pixellated active silicon stopper will be instrumented by a collaboration between the groups at IFIC Valencia, the University of Santiago de Compostela and the University of Surrey (see later).

RISING Array Geometry, The Active Stopper Set-up and Implantation Rate Limitations

The active stopper experiments proposed to the current EA are expected to have a common experimental set-up. This will consist of the Stopped Beam RISING gamma-ray array of 15 clover detectors, placed in two rings or seven and eight cluster detectors respectively (see figures 2 and 3).

Figure 2 Left Suggested beam-line particle identification detectors prior to the DSSSD Active Stopper. *Right:* CAD design for the RISING array in the Stopped Beam Active Stopper Configuration.

In this geometry, the calculated photopeak efficiency for gamma-ray detection from the active stopper detector placed in the centre of the RISING array (see below) is calculated between 11% for an gamma-ray energy of 1.33 MeV and 20% for 662 keV. In addition, an array of 8 BaF_2 detectors will also

be placed in the gamma-ray array for the 'fast-timing' of lifetimes in the hundreds of pico to few nanoseconds time range. This may also be utilised in specific cases where the ordering of newly observed transitions in a cascade needs to be measured.

Figure 3 CAD drawings of the Stopped Beam RISING array, plus 8 BAF2 detectors for fast timing placed at forward angles. (left) Showing the support structure and space/plates for fast plastic scintillation detectors and (right) Shows space for the 25cm x 25cm vacuum chamber in which to house the DSSSDs.

The FRS will be used in the monochromatic mode which will enable specific ions to be stopped in a single 1mm thick silicon detector. This means that the experimenters can select specific elements of interest for β -delayed study. Figure 4 shows the effect of this from the recent experiment of Benlliure et al., following the fragmentation of a ²⁰⁸Pb beam on a ⁹Be target at a beam energy of 1 GeV per nucleon.

Figure 4 Particle identification plots centred on ¹⁹⁸Ir ions produced following the fragmentation of 1 GeV per nucleon ²⁰⁸Pb beam on a ⁹Be target with the FRS used in monochromatic mode. The left hand figure shows the total production yield at the end of the FRS, while the right hand side is limited to those ions which stopped in the 1mm thick silicon detector.

The active stopper will consist of three 5cm by 5cm double sided silicon strip detectors (DSSSDs) each with 16 horizontal and 16 vertical strips (giving each detector defined 256 pixels, or 768 pixels for the active stopper as a whole). The active stopper detectors are 1 mm thick, which is enough to stop all the ions of a given element if the FRS is used in monochromatic mode. (Heavier elements are stopped in the

degrader or plastic scintillator which precedes the active stopper, as shown schematically on the left hand side of figure 2, while the lower-Z elements pass through the active stopper and are detected in to the plastic veto scintillator detector.

A number of the proposed experiments for the Active Stopper RISING campaign rely on rate estimates assuming 'cold fragmentation' of the primary beam [12]. Figure 5 shows the robustness of these estimates when compared with the measured cross-sections for cold-fragmentation products following reactions between a ¹⁹⁷Au beam on ⁹Be target at 950 MeV per nucleon [12].

Figure 5: Particle identification plots and experimental cross-sections for the 'cold fragmentation' products in the ¹⁹⁷Au+⁹Be reaction, highlighting the good agreements with the theoretical predictions for the cross-section given in reference. (Data taken from ref. [12]).

Assuming upper-limit β -decay half-life measurements of up to 30 seconds for the less exotic nuclei such as ^{204,5}Au, [11], this implies each pixel can be hit by a new ion on average every 150 seconds (5 typical half-lives) for a reasonable peak to total ratio. This assumption leads to a maximum implantation rate at the active stopper of around 5 ions in total per second, or 144k per 8 hour shift. The DSSSD array will have dual gain pre-amplifiers to obtain energy measurements for both the implanted heavy ion and the subsequently emitted β -particle. Each event will be time stamped with a MHz clock to allow time correllation between the implantation and the subsequent β -decay in the same pixel. Most of the nuclei of interest have predicted β -decay half-lives of less than 10 seconds (see figures 6-9) which should significantly improve the experimentally useful correlation-time limit.

TIMELINESS

The proposal preceedes a massive investment in the GSI-FAIR facility. This €700M upgrade will make GSI the world's leading laboratory to study heavy, radioactive nuclei. This proposal represents a unque opportunity for the nuclear structure community to build on its initial projectile fragmentation isomer and reaction work at GSI and to drive a major physics initiative in nuclear spectroscopy through the RISING project. The combination of the FRS and the RISING array mean that the experimental technology is only now available to enable the measurements outlined in the following proposals.

91	Pa215	Pa216	Pa217	Pa218	Pa219	Pa220	Pa221	Pa222	Pa223	Pa224	Pa225	Pa226	Pa227	Pa228	Pa229
90	Th214	Th215	Th216	Th217	Th218	Th219	Th220	Th221	Th222	Th223	Th224	Th225	Th226	Th227	Th228
89	Ac213	Ac214 8.2s	Ac215 0.175	Ac216	Ac217	Ac218	Ac219	Ac220	Ac221 8.852s	Ac222	Ac223	Ac224	Ac225	Ac226	AC227
88	Ra212	Ra213	Ra214	Ra215 0.00167s	Ra216	Ra217	Ra218	Ra219 e.eis	Ra220	Ra221	Ra222	Ra223	Ra224	Ra225	Ra226
87	Fr211 3.1m	Fr212 20m	Fr213	Fr214 0.005s	Fr215 8.6e-08s	Fr216 7e-07s	Fr217 1.6e-05s	Fr218 9.022s	Fr219 0.025	Fr220	Fr221	Fr222	Fr223	Fr224 3.3m	Fr225
86	Rn210	Rn211	Rn212	Rn213	Rn214	Rn215	Rn216	Rn217	Rn218	Rn219	Rn220	Rn221	Rn222	Rn223	Rn224
85	At209	At210	At211	At212	At213	At214	At215	At216	At217 8.8323s	At218	At219	At220	At221	At222	At223
84	Po208	Po209	Po210	Po211	Po212	Po213	Po214	Po215	Po216	Po217	Po218	Po219 30.5m	Po220 36.3m	Po221 6.18m	Po222 9.3m
83	Bi207	Bi208 3.68e+05y	Bi209	Bi210	Bi211	Bi212	B1213	Bi214	Bi215	Bi216	Bi217	Bi218	Bi219 9.87s	Bi220	Bi221
82	Pb206	Pb207	Pb208	Pb209 3.253h	Pb210	Pb211 36.1m	Pb212	Pb213	Pb214 26.8m	Pb215 36s	Pb216 38.7s	Pb217 28.7s	Pb218	Pb219 5.94s	Pb220
81	T1205	T1206 4.199m	T1207 4.77m	T1208 3.053m	T1209 2.161m	T1210	T1211 4.865	T1212 4.185	T1213 2.095	T1214	T1215	T1216 0.811s	T1217 0.63s	T1218 0.4795	T1219 0.44s
80	Hg204	Hg205	Hg206 8.15m	Hg207	Hg208	Hg209 35s	Hg210	Hg211 1.13s	Hg212 0.528s	Hg213 0.524s	Hg214 0.377s	Hg215 0.321s	Hg216 0.226s		
79	Au203	Au204	Au205	Au206	Au207	Au208	Au209 8.746s	Au210 0.917s	Au211 0.507s	Au212	Au213 0.32#	Au214 0.267#	Au215 0.196#		
78	Pt202	Pt203	Pt204	Pt205	Pt206 0.465s	Pt207 0.562s	Pt208 0.302s	Pt209 0.379s	Pt210	Pt211 0.177s					
77	Ir201	Ir202	Ir203	Ir204	Ir205 8.296s	Ir206 0.321s	Ir207 0.187s	Ir208	Ir209 0.124s						
76	0s200	0s201 9.44s	0s202 2.38s	0s203 0.316s	0s204 0.202s	0s205 0.243s									
75	Re199 1.94s	Re200	Re201 0.535s	Re202 0.116s	Re203 0.0905s	Re204 0.114s	J								

Figure 6: Predicted (white squares) β -decay half-lives for the neutron-rich N~126 region [9].

83	Bi193	Bi194	Bi195 3.05m	Bi196 5.13m	Bi197 9.33m	Bi198	Bi199 27m	Bi200	Bi201	Bi202	Bi203	Bi204	Bi205	Bi206	Bi207 31.55y
82	Pb192 3.5m	Pb193	Pb194	Pb195	Pb196	Pb197	Pb198	Pb199	Pb200	Pb201	Pb202	Pb203	Pb204	Pb205	Pb206
81	T1191 5.22m	T1192	T1193 21.6m	T1194 33m	T1195	T1196	T1197 2.84h	T1198 5.3h	T1199 7.42h	T1200	T1201 3.038d	T1202	T1203	T1204 3.78y	T1205 78.476
80	Hg190	Hg191 50.8m	Hg192 4.85h	Hg193	Hg194 528v	Hg195	Hg196 0.15	Hg197 2.786d	Hg198 9.97	Hg199 16.87	Hg200	Hg201	Hg202	Hg203	Hg204 6.87
79	Au189	Au190	Au191 3.18h	Au192	Au193	Au194	Au195	Au196 6.1678	Au197	Au198 2.695d	Au199 3.139d	Au200	Au201	Au202	Au203
78	Pt188	Pt189	Pt190	Pt191 2.862d	Pt192 0.782	Pt193	Pt194 32.967	Pt195 33.832	Pt196	Pt197 19.89h	Pt198 7.163	Pt199 30.8m	Pt200	Pt201	Pt202
77	Ir187 10.5h	Ir188	Ir189	Ir190	Ir191 37.3	Ir192	Ir193	Ir194	Ir195 3.8h	Ir196	Ir197 8.9m	Ir198 8s	Ir199 1.61m	Ir200	Ir201 18.5s
76	0s186	0s187	0s188 13.24	0s189 16.15	0s190	0s191 15.4d	0s192 40.78	0s193	0s194 6y	0s195 6.5m	0s196 34.9m	0s197 1.36m	0s198 45.5s	0s199 17.2s	0s200
75	Re185	Re186	Re187	Re188	Re189	Re190	Re191 9.8m	Re192	Re193	Re194	Re195 10.3s	Re196 5.13s	Re197	Re198	Re199 1.94s
74	W 184 30.64	₩ 185 75.1d	W 186 28.43	W 187 23.72h	W 188 69.4d	W 189	₩ 190 30m	₩ 191 1.16m	W 192 36.6s	W 193 21s	W 194 8.08s	W 195 6.16s	₩ 196 4.79s	₩ 197 2.15s	₩ 198 1.32s
73	Ta183	Ta184 8.7h	Ta185	Ta186	Ta187 1.82m	Ta188 24.15	Ta189 34.75	Ta190 8.51s	Ta191 9.52s	Ta192 4.42s	Ta193 2.865	Ta194	Ta195	Ta196 0.768s	Ta197 0.577s
72	Hf182 8.9e+06y	Hf183	Hf184 4.12h	Hf185 3.5m	Hf186	Hf187	Hf188 8.39s	Hf189 5.39s	Hf190	Hf191 2.62s	Hf192	Hf193 1.04s	Hf194 0.726s	Hf195 0.454s	
71	Lu181 3.5m	Lu182	Lu183 58s	Lu184 185	Lu185 6.75s	Lu186 3.885	Lu187 4.96s	Lu188 2.11s	Lu189 2.165	Lu190	Lu191 0.65s	Lu192 0.625s	Lu193 0.475s	Lu194 0.298s	
70	Yb180 2.4m	Yb181 20.3s	Yb182 5.78s	Yb183 7.23s	Yb184 2.55s	Yb185 1.75s	Yb186 1.52s	Yb187 0.821s	Yb188 0.734s	Yb189 0.506s	Yb190 0.299s				
69	Tm179 4.88s	Tm180 3.38s	Tm181 1.87s	Tm182	Tm183 0.793≈	Tm184 0.594s	Tm185 0.559s	Tm186 0.349s	Tm187 0.319≲	Tm188 0.249s	Tm189 0.1825				
68	Er178	Er179	Er180	Er181 0.984s	Er182 0.321s	Er183 0.303s	Er184 0.261s	Er185 0.21s							
67	Ho177 0.711s	Ho178 0.607s	Ho179 0.35s	Ho180 0.403s	Ho181 0.171s	Ho182 0.167s	Ho183 0.15s	Ho184 ø.13s							

Figure 7 Predicted (white squares) β -half-lives for the ¹⁹⁰W Region [9].

71	Lu167	Lu168	Lu169	Lu170	Lu171	Lu172	Lu173	Lu174	Lu175	Lu176	Lu177	Lu178	Lu179	Lu180	Lu181
70	Yb166	Yb167	Yb168 9.13	Yb169	Yb170 3.04	Yb171	Yb172	Yb173	Yb174 31.83	Yb175	Yb176	Yb177	Yb178	Yb179	Yb180
69	Tm165	Tm166	Tm167	Tm168 93.1d	Tm169	Tm170	Tm171	Tm172	Tm173	Tm174	Tm175	Tm176	Tm177	Tm178	Tm179
68	Er164	Er165	Er166 33.61	Er167	Er168	Er169 9.4d	Er170	Er171 7.516h	Er172	Er173	Er174 3.1m	Er175	Er176 6.78s	Er177 4.07s	Er178
67	Ho163 4570y	Ho164	Ho165	Ho166	Ho167 3.1h	Ho168	Ho169 4.7m	Ho170	Ho171 535	Ho172	Ho173 7.9s	Ho174 4.15s	Ho175	Ho176	Ho177 0.711s
66	Dy162	Dy163 24.9	Dy164 28.18	Dy165 2.334h	Dy166 3.4d	Dy167 6.2m	Dy168 8.7m	Dy169 395	Dy170 10.7s	Dy171 6.8s	Dy172 2.03s	Dy173 1.68s	Dy174 0.916s	Dy175 0.983s	Dy176 0.419s
65	Tb161 6.884	Tb162	Tb163	Tb164	Tb165	Tb166 25.65	Tb167 19.45	Tb168 8.25	Tb169 2.35s	Tb170	Tb171 0.892s	Tb172 0.772s	Tb173 0.471s	Tb174 0.366s	Tb175 0.201s
64	Gd160 21.86	Gd161 3.66m	Gd162 8.4m	Gd163	Gd164 45s	Gd165 10.35	Gd166 4.8s	Gd167 3.81s	Gd168	Gd169	Gd170 0.48s	Gd171 0.418s	Gd172 0.2325	Gd173 0.216s	Gd174 0.118s
63	Eu159	Eu160	Eu161 26s	Eu162	Eu163 6.025	Eu164 3.46s	Eu165	Eu166 0.996s	Eu167 0.525s	Eu168 0.412s	Eu169 0.231s	Eu170 0.21s	Eu171 0.1395	Eu172 0.133s	Eu173 0.0779s
62	Sm158 5.3m	Sm159	Sm160 9.6s	Sm161 4.8s	Sm162	Sm163 1.98s	Sm164 0.821s	Sm165 0.65s	Sm166 0.296s	Sm167 0.211s	Sm168 0.124s	Sm169 0.125s			
61	Pm157 10.56s	Pm158 4.8s	Pm159	Pm160 2.45s	Pm161 0.863s	Pm162 0.583s	Pm163 0.321s	Pm164 0.293s	Pm165 0.14s	Pm166 0.132s	Pm167 0.0871s	Pm168 0.0902s			
60	Nd156 5.47s	Nd157 2.72s	Nd158 0.862#	Nd159 0.794s	Nd160 0.294s	Nd161 0.258s	Nd162 0.124s	Nd163 0.108#	Nd164 0.0539s						
59	Pr155 0.772s	Pr156 0.979s	Pr157 0.47s	Pr158 0.424s	Pr159 0.22s	Pr160 0.195s	Pr161 0.085s	Pr162 0.093s	Pr163 0.0513s						
58	Ce154 0.467s	Ce155 0.428s	Ce156 0.18s	Ce157 0.179s	Ce158 0.0812s	Ce159 0.0766s	Ce160 0.0402s								
57	La153 0.236s	La154 0.194s	La155 0.1s	La156 0.186s	La157 0.0528s	La158 0.0557s									
56	Ba152 e.103s	Ba153 0.0989s	Ba154 0.0595s	Ba155 0.0662s	Ba156 0.0325s]									
55	Cs151 0.0522s	Cs152 0.0528s	Cs153 0.0328s	Cs154 0.0354s]										

Figure 8 Predicted β -decay half-lives for the ¹⁷⁰Dy Region [9].

31															Ga 57
30														Zn 55	Zn 56
29														Cu 54	Cu 55
28								Ni 47	Ni 48	Ni 49	Ni 50	Ni 51	Ni 52	0.023s Ni 53	0.0354s Ni 54
27								0.00346s Co 46	<u>0.00938s</u> Co 47	0.012s Co 48	<u>0.012</u> ≤ Co 49	e.e197s Co 50	0.038s Co 51	0.045s Co 52	Co 53
0.0							D 44	0.00587s	0.0143s	0.0132s	0.0261s	0.044s	0.0533s	0.115s	0.247s
Zb							1e 44 0.00586s	16 45 0.004s	10.0097s	Fe 4/ 0.0218s	le 48 0.044s	1e 49 0.07s	10 DU 0.15s	10.305s	10 5Z 8.275h
25							Mn 43 0.0103s	Mn 44 0.01435	Mn 45 0.0367≲	Mn 46 0.034s	Mn 47 0.15	Mn 48 0.1581s	Mn 49 0.3821s	Mn 50	Mn 51
24					Cr 40	Cr 41	Cr 42	Cr 43	Cr 44	Cr 45	Cr 46	Cr 47	Cr 48	Cr 49	Cr 50
23					V 39	V 40	V 41	V 42	V 43	V 44	V 45	V 46	V 47	V 48	V 49
22				Ti 37	Ti 38	Ti 39	Ti 40	Ti 41	Ti 42	Ti 43	Ti 44	Ti 45	Ti 46	Ti 47	Ti 48
21				SC 36	SC 37	SC 38	Sc 39	Sc 40	Sc 41	Sc 42	Sc 43	Sc 44	Sc 45	Sc 46	Sc 47
20			Ca 34	Ca 35	Ca 36	Ca 37	Ca 38	Ca 39	Ca 40	Ca 41	Ca 42	Ca 43	Ca 44	Ca 45	Ca 46
19			K 33	K 34	K 35	K 36	K 37	K 38	K 39	K 40	K 41	K 42	K 43	K 44	K 45
18	Ar 30	Ar 31	Ar 32	Ar 33	Ar 34	Ar 35	Ar 36	Ar 37	Ar 38	Ar 39	Ar 40	Ar 41	Ar 42	Ar 43	Ar 44
17	C1 29	C1 30	C1 31	C1 32	C1 33	C1 34	C1 35	C1 36	C1 37	C1 38	C1 39	C1 40	C1 41	C1 42	C1 43
16	S 28	S 29	S 30	S 31	S_ 32	S 33	S 34	S 35	S 36	S_37	S 38	S 39	S 40	S 41	S 42
15	P 27	P 28	P 29	P 30	P 31	P 32	P 33	P 34	P 35	P 36	P 37	P 38	P 39	P 40	P 41

Figure 9 Predicted decay half-lives for the region around ⁵⁰Fe [9].

REFERENCES:

- [1] Zs.Podolyàk et al., Nucl. Phys. A722 (2003) 273c
- [2] M.Caamano et al., Eur. Phys. Jour. A23 (2005) 201
- [3] Z.Podolyàk et al., Phys. Lett. B491 (2000) 225
- [4] M.Pfüztner et al., Phys. Rev. C65 (2002) 064604
- [5] K.A.Gladnishki et al., Phys. Rev. C69 (2004) 024617
- [6] M.Pfützner et al., Phys. Lett. 444B (1998) 32
- [7] S. Liddick et al., *Phys. Rev. Lett.* 92 (2004) 072502; *Phys. Rev.* C70 (2004) 064303; W. Walters et al., Phys. Rev. C70 (2004) 034314
- [8] P. Moller, J.R.Nix and K.L. Kratz, LA-UR-94-3898 (1994); P.Moller et al., At. Data Nuclear Data Tables 59 (1995) 185 and http://ie.lbl.gov/systematics.html
- [9] T.Tachibana and M.Yamada, *Proc. Int. Conf. on Exotic Nuclei and Masses, Arles,* (1995) p763 and http://wwwnndc.tokai.jaeri.go.jp/CN04/index.html
- [10] B.Fornal et al., Phys. Rev, Lett. 87 (2001) 212501
- [11] Ch.Wennemann et al., Z. Phys. A347 (1994) 185; D.A.Craig and H.W. Taylor J. Phys G10 (1984) 1133
- [12] J.Benlliure et al., Nucl. Phys. A660 (1999) 87