Along the N=126 closed shell: 204 Pt*

Zs. Podolyák^a, S.J. Steer^a, S. Pietri^a, E. Werner-Malento^b ^c, P.H. Regan^a, D. Rudolph^d,
A.B. Garnsworthy^a, R. Hoischen^d, M. Górska^b, J. Gerl^b, H.J. Wollersheim^b,
T. Kurtukian-Nieto^e, G. Benzoni^f, F. Becker^b, P. Bednarczyk^{bg}, L. Caceres^{bh},
P. Doornenbal^b, H. Geissel^b, J. Grębosz^{bg}, A. Kelic^b, I. Kojouharov^b, N. Kurz^b,
F. Montes^b, W. Prokopowicz^{be}, T. Saito^b, H. Schaffner^b, S. Tashenov^b, A. Heinzⁱ,
M. Pfützner^c, M. Hellström^d, A. Jungclaus^h, L.-L. Andersson^d, L. Atanasova^j,
D.L. Balabanski^k, M.A. Bentley^l, B. Blank^m, A. Blazhevⁿ, C. Brandau^{ab}, J. Brown^l,
A.M. Bruce^o, F. Camera^f, W.N. Catford^a, I.J. Cullen^a, Zs. Dombrádi^p, E. Estevez^e,
C. Fahlander^d, W. Gelletly^a, G. Ilieⁿ, E.K. Johansson^d, J. Jolieⁿ, G.A. Jones^a,
M. Kmiecik^g, F.G. Kondev^q, S. Lalkovski^{jo}, Z. Liu^a, A. Maj^g, S. Myalski^g, S. Schwertel^r,
T. Shizuma^{as}, A.J. Simons^a, P.M. Walker^a, O. Wieland^f, B.A. Brown^t

^aDepartment of Physics, University of Surrey, Guildford, GU2 7XH, UK

^bGSI, Planckstrasse 1, D-64291, Darmstadt, Germany

^cIEP, Warsaw University, Hoźa 69, PL-00-681, Warsaw, Poland

^dDepartment of Physics, Lund University, S-22100 Lund, Sweden

^eUniversidad de Santiago de Compostela, E-15706, Santiago de Compostela, Spain

^fINFN, Universitá degli Studi di Milano, I-20133, Milano, Italy

^gThe Henryk Niewodniczański Institute of Nuclear Physics, PL-31-342, Kraków, Poland

^hDepartamento de Fisica Teórica, Universidad Autonoma de Madrid, E-28049, Madrid, Spain

ⁱWNSL, Yale University, New Haven, CT 06520-8124, USA

^jFaculty of Physics, University of Sofia, Sofia, BG-1164, Bulgaria

^kInst. for Nucl. Research, Nucl. Energy, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria

¹Dept. of Physics, University of York, Heslington, York, Y01 5DD, UK

^mCENBG, le Haut Vigneau, F-33175, Gradignan Cedex, France

ⁿIKP, Universität zu Köln, D-50937, Köln, Germany

^oSchool of Engineering, University of Brighton, Brighton, BN2 4GJ, UK

^pInstitute for Nuclear Research, ATOMKI, Debrecen, H-4001, Hungary

^qNuclear Engineering Division, Argonne National Laboratory, Argonne IL-60439, USA

^rPhysik Department E12, Technische Universität München, Garching, Germany

^sJapan Atomic Energy Agency, Kyoto, 619-0215, Japan

^tDepartment of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

Relativistic energy projectile fragmentation of ²⁰⁸Pb has been used to produce neutronrich nuclei with N≈126. The nuclei of interest were studied by detecting delayed gamma rays following the decay of isomeric states. Experimental information on the excited states of the neutron-rich ²⁰⁴Pt N=126 nucleus, following internal decay of two isomeric states, was obtained for the first time. Raw experimental data and shell-model calculations are presented.

1. INTRODUCTION

First results from a new initiative of experiments focusing on the study of the internal structure of nuclei at the extremes of N/Z ratio using isomer spectroscopy are reported. These experiments represent the first of the Stopped Beam section of the *Rare Isotopes Investigations at GSI* (RISING) project. Exotic nuclei were synthesised using relativistic projectile fragmentation of E/A=500-1000 MeV beams of ⁵⁸Ni [1], ¹⁰⁷Ag [2] and ²⁰⁸Pb.

The present paper presents selected highlights of the experimental results, with the focus on N=126 systems populated in the fragmentation of the ²⁰⁸Pb projectile. Studies of semi-magic nuclei are of special importance since they allow direct test of the purity of the model wave functions. Information on the single-particle energies and two nucleon residual interactions can be derived from the experimental observables such as energies of the excited states and transition probabilities.

2. EXPERIMENTAL DETAILS

Heavy nuclear species were populated in relativistic energy projectile fragmentation. A beryllium target of thickness 2.5 g/cm² was bombarded with an E/A=1 GeV ²⁰⁸Pb beam provided by the SIS accelerator at GSI, Darmstadt, Germany. The nuclei of interest were separated and identified using the FRagment Separator (FRS) [3] operated in standard achromatic mode. The setup is shown in fig. 1. The identification of the fragments (see fig. 2) is based on the determined A/q (~TOF), the energy loss in the ionisation chambers ($\approx Z$), and the longitudinal position of the nuclei at the intermediate (S2) and final (S4) focal planes of the FRS. For more details about the setup used in the present experiment see ref. [5].

^{*}This work is supported by EURONS European Commission contract no. 506065, EPRSC(UK), the Swedish Research Council, the Polish Ministry of Science and Higher Education, under grants 1-P03B-030-30 & 620E-77SPBGSIP-03 DWM1052004-2007, the Bulgarian Science Fund and VUF06/05, the US Department of Energy. under grants W-31-109-ENG-38 & DE-FG02-91ER40609.

Figure 1. Schematic view of the experimental setup.

The transmitted nuclei were stopped in a cacther surrounded by the high-efficiency, high granularity Stopped RISING γ -ray spectrometer [4]. Time-correlated gamma de-

Figure 2. Identification of the fragmentation products. (a) Energy loss at the final focal plane vs. energy loss at the middle focal plane. It distinguishes between nuclei which don't change charge state at S2 from those which do. (b,c,d) energy loss vs. time-of-flight matrices without charge state condition (b), selecting fully-stripped nuclei (c) and H-like nuclei (d), respectively. The circless in (c) and (d) indicate the ²⁰⁴Pt nuclei.

Figure 3. Delayed gamma-ray spectra associated with 206 Hg and 204 Pt. Note that in the upper panels the shape of the background around ~ 300 keV is unphysical, and it is due to used data analysis method.

cays from individually identified nuclear species have been measured, allowing the clean identification of isomeric decays.

3. RESULTS AND DISCUSSION

Information on the neutron-rich N=126 nuclei is scarce. The lack of information is due to the difficulties in populating these nuclei. Below the doubly magic ²⁰⁸Pb nucleus there is experimental information on only three isotones: ²⁰⁷Tl, ²⁰⁶Hg and ²⁰⁵Au. While in both ²⁰⁷Tl [6] and ²⁰⁶Hg [7] excited states have been observed, in ²⁰⁵Au only the ground state is known $(I^{\pi}=(3/2^+)$ [8]).

²⁰⁴Pt has four protons less than the doubly magic ²⁰⁸Pb nucleus. Its yrast structure should be dominated by the proton-hole orbitals $\pi d_{3/2}$, $\pi s_{1/2}$, $\pi h_{11/2}$ and possible $\pi d_{5/2}$. Its level scheme is expected to be similar to that of ²⁰⁶Hg.

Gamma-ray spectra associated with 204 Pt and 206 Hg are presented in fig.3. In 204 Pt two new isomeric decays have been observed, with a longer lifetime associated to the 872 keV and 1123 keV transitions, and a shorter to the 1061 keV, 1158 keV and 96 keV gamma-lines.

Figure 4. Partial level schemes of 207 Tl [6] and 206 Hg [7]. The results of the shell model calculation for 206 Hg and 204 Pt are shown on the right hand side.

Shell-model calculations are being performed using the OXBASH code [9]. The empirical interaction matrix elements are from [10] and are based on those of Kuo and Herling [11]. The experimental proton-hole energies were taken from the experimental level scheme of ²⁰⁷Tl. The results of the calculations for ²⁰⁶Hg and ²⁰⁴Pt are presented in fig. 4. There is a rather good agreement between theory and experiment for ²⁰⁶Hg (note that the interaction matrix elements were obtained by fitting on a range of nuclei, including the 2⁺ and 5⁻ states of ²⁰⁶Hg [10]). In ²⁰⁴Pt, these calculations predict a 4⁺ state at rather low energy, below both the 5⁻ and 7⁻ states, with a dominant configuration of $\pi d_{5/2}^{-1} d_{3/2}^{-1}$. The existence of a 4⁺ state below the 5⁻ and 7⁻ states is in contradiction with the experimental findings: none of these states would be isomeric with microseconds lifetime. Since in the configuration of the 4⁺ state a d_{5/2} proton-hole is involved, further calculations were performed for nuclei where such states are known experimentally. The comparison between the OXBASH calculation and experiment for ²⁰³Au are shown in figure 5. Here spectroscopic factor measurements [12] indicate that the second 5/2⁺ state

Figure 5. Comparison between experiments [12] and shell model calculation for 203 Au.

has the largest $\pi d_{5/2}^{-1}$ component. The calculations foresee this state at much lower energy. This might indicate that states involving the $\pi d_{5/2}^{-1}$ proton-hole lie at considerably higher energies that the present calculations predict. The interpretation of the experimental results for ²⁰⁴Pt is in progress.

REFERENCES

- 1. D. Rudolph *et al.*, Eur. Phys. J. A (in press) (Proc. of the RNB7 conf, 2006, Cortina d'Ampezzo, Italy).
- 2. P.H. Regan et al., these proceedings.
- 3. H. Geissel et al., Nucl. Instrum. Methods Phys. Res. Sect. B70 (1992) 286.
- 4. Zs. Podolyák *et al.*, Eur. Phys. J. A (in press) (Proc. of the RNB7 conf, 2006, Cortina d'Ampezzo, Italy).
- 5. S. Pietri *et al.*, Nucl. Instrum. Methods Phys. Res. Sect.B (in press) (Proc. of the CAARI'05 conf., 2006, Dallas, USA).
- 6. D. Eccleshall, M.J.L.Yates, Phys. Lett. 19 (1965) 301.
- 7. B. Fornal et al., Phys. Rev. Lett. 87 (2001) 212501.
- Ch. Wennemann *et al.*, Z.Phys. A347 (1994) 185; F.G. Kondev, Nucl. Data Sheets 101 (2004) 521.
- 9. B.A. Brown A. Etchegoyen, W.D.M. Rae, The computer code OXBASH, MSU-NSCL report number 524.
- 10. L. Rydström et al., Nucl. Phys. A512 (1990) 217.
- T.T.S. Kuo and G.H. Herling, Naval Research Laboratory Report 2259 (Washington, DC, 1971).
- F.G. Kondev, Nucl. Data Sheets 105 (2005) 1; P. Grabmayr et al., Phys. Rev. C49 (1994) 2971.