Review

A RISING g-factor measurement of the $19/2^+$ isomer in 127Sn

L. Atanasovaa,∗, D.L. Balabanskib, M. Hassd, F. Beckere, P. Bednarczyke, S.K. Chamolid, P. Doornenbale, G. Georgievg, J. Gerle, K.A. Gladnishkic, M. Górskae, J. Grebosze, F. Kmicikf, S. Lakshmid, R. Lozevaa, A. Majf, G. Neyensh, M. Pfützneri, G. Simpsonj, N. Vermeulenh, H.J. Wollersheime and the g-RISING Collaboration

aFaculty of Physics, University of Sofia, BG-1164 Sofia, Bulgaria
bINRNE, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria
cUniversità di Camerino and INFN-Perugia, 62032 Camerino, Italy
dWeizmann Institute of Science, Rehovot 76100, Israel
eGSI, Planckstrasse 1, D-64291, Darmstadt, Germany
fIFJ PAN, PL-31-342 Kraków, Poland
gCSNSM, F-91405 Orsay Campus, France
hIKS, K.U. Leuven, 3001 Leuven, Belgium
iIEP, Warsaw University, PL-00-681 Warsaw, Poland
jLPSC, 38026 Grenoble Cedex, France

Abstract

The g-factor of the $19/2^+ T_1/2 = 4.5(3)$ µs isomer in 127Sn, which was populated in relativistic projectile fragmentation, was measured within the g-RISING campaign at GSI, utilizing the time-differential perturbed angular distribution method. The deduced g-factor $|g| \approx 0.16$ is in agreement with theoretical estimates based on the empirical g-factors.

© 2007 Elsevier B.V. All rights reserved.

* Corresponding address: Department of Atomic Physics, Faculty of Physics, University of Sofia, 5 James Bourchier Blvd, BG-1164 Sofia, Bulgaria. Tel.: +359 2 8161 834.

E-mail address: liliya@phys.uni-sofia.bg (L. Atanasova).

0146-6410/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
The g-factor measurement of the 19/2$^+$, $T_{1/2} = 4.5(3)$ µs isomer in 127Sn [1,2] aims at a study of the structure of the neutron-rich nuclei in the vicinity of the doubly-magic 132Sn. The experiment was done in relativistic projectile fragmentation of a 136Xe beam at $E/A = 600$ MeV on a thin Be production target within the RISING (Rare ISotope INvestigations at GSI) project [3] at the GSI laboratory, Germany. The fully-stripped ions were separated, tracked and identified on an event-by-event basis. They were implanted in a high-purity Cooper plate, which provided a perturbation-free environment for the isomeric decay. Ion–γ coincidences were recorded and analyzed with the CRACOW software [4]. The experimental set-up is discussed in detail in [5].

The Time-Differential Perturbed Angular Distributions (TDPAD) method, based on the measurement of the Larmor precession of a spin-oriented nuclear ensemble in an external magnetic field B, was applied; the Larmor frequency $\omega_L = -\frac{g\mu_N B}{\hbar}$ is measured in the experiment. The magnitude and sign of alignment of the ensemble depend on the longitudinal momentum distribution [6] of the fragments. In order to preserve the orientation produced in the reaction, fully-stripped ions are separated at relativistic energies. Note that ions heavier than $A = 80$ produced and separated as fully-stripped fragments are available only at GSI.

To extract the g-factor, the γ-decay time spectra, measured at ±45° and ±135° with respect to the beam axis in a horizontal plane, were combined and compared with the theoretical $R(t)$ function, $R(t, \omega_L) = \frac{3a_2}{4+a_2} \sin(2\omega_L t)$, where a_2 depends on details of the γ decay and the amount of orientation. The $R(t)$ functions of the 1095 and 715 keV γ-rays for the outmost wing of the momentum distribution are presented in Fig. 1. They are out of phase, which is in disagreement with the published level scheme [1]. For the $R(t)$ function of the 715 keV transition $\sim 10^4$ photopeak events were used in the data analysis, which sets a limit for such experiments.

Fig. 1. Left: $R(t)$ functions for the 1095 keV transition (up) and for the 715 keV transition (down) at the wing of the momentum distribution. Right: partial level scheme of 127Sn, revealing the decay of the 19/2$^+$ isomer [1].
The deduced value of the g-factor, $|g| \approx 0.16$, is in agreement with theoretical expectations based on the empirical g-factors, which yield a value $g(s_{1/2}^{-1/2}h_{11/2}^{-2}) \approx -0.156$ for the main component of the wave function, and with large-scale shell model calculations. These results will be discussed in detail elsewhere [7].

First results from the g-RISING campaign for the g-factor of the $19/2^+$ isomer in 127Sn from relativistic fragmentation demonstrate that significant alignment ($\sim 10\%$) is observed in the outmost wing of the momentum distribution. The present experiment provides a benchmark (in terms of intensity of the isomer beam and number of detected γ-rays) for further studies of electromagnetic moments of isomers in nuclei yet farther away from stability.

Acknowledgments

This work was supported in part by the EC EURONS RII3-CT-2004-506065 project, the Bulgarian National Science Fund grant VUF06/05 and the Polish Ministry of Science and Higher Education grants 1-P03B-030-30 and 620/E-77/SPB/GSI/P-03/DWM105/2004-2007.

References