

Available online at www.sciencedirect.com

Progress in Particle and Nuclear Physics

Progress in Particle and Nuclear Physics 59 (2007) 355-357

www.elsevier.com/locate/ppnp

Review

A RISING g-factor measurement of the $19/2^+$ isomer in 127 Sn

L. Atanasova^{a,*}, D.L. Balabanski^{b,c}, M. Hass^d, F. Becker^e, P. Bednarczyk^{e,f}, S.K. Chamoli^d, P. Doornenbal^e, G. Georgiev^g, J. Gerl^e, K.A. Gladnishki^c, M. Górska^e, J. Grebosz^{e,f}, M. Kmiecik^f, S. Lakshmi^d, R. Lozeva^{a,h}, A. Maj^f, G. Neyens^h, M. Pfütznerⁱ, G. Simpson^j, N. Vermeulen^h, H.J. Wollersheim^e and the g-RISING Collaboration

^a Faculty of Physics, University of Sofia, BG-1164 Sofia, Bulgaria
^b INRNE, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria
^c Universitá di Camerino and INFN-Perugia, 62032 Camerino, Italy
^d Weizmann Institute of Science, Rehovot 76100, Israel
^e GSI, Planckstrasse 1, D-64291, Darmstadt, Germany
^f IFJ PAN, PL-31-342 Kraków, Poland
^g CSNSM, F-91405 Orsay Campus, France
^h IKS, K.U. Leuven, 3001 Leuven, Belgium
ⁱ IEP, Warsaw University, PL-00-681 Warsaw, Poland
^j LPSC, 38026 Grenoble Cedex, France

Abstract

The g-factor of the $19/2^+T_{1/2} = 4.5(3) \ \mu s$ isomer in ¹²⁷Sn, which was populated in relativistic projectile fragmentation, was measured within the g-RISING campaign at GSI, utilizing the time-differential perturbed angular distribution method. The deduced g-factor $|g| \approx 0.16$ is in agreement with theoretical estimates based on the empirical g-factors.

© 2007 Elsevier B.V. All rights reserved.

0146-6410/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.ppnp.2006.12.016

^{*} Corresponding address: Department of Atomic Physics, Faculty of Physics, University of Sofia, 5 James Bourchier Blvd, BG-1164 Sofia, Bulgaria. Tel.: +359 2 8161 834.

E-mail address: liliya@phys.uni-sofia.bg (L. Atanasova).

Keywords: Electromagnetic moments; Angular distribution and correlation measurements; Projectile and target fragmentation; $90 \le A \ge 149$

The g-factor measurement of the $19/2^+$, $T_{1/2} = 4.5(3)$ µs isomer in ¹²⁷Sn [1,2] aims at a study of the structure of the neutron-rich nuclei in the vicinity of the doubly-magic ¹³²Sn. The experiment was done in relativistic projectile fragmentation of a ¹³⁶Xe beam at E/A =600 MeV on a thin Be production target within the RISING (Rare ISotope INvestigations at GSI) project [3] at the GSI laboratory, Germany. The fully-stripped ions were separated, tracked and identified on an event-by-event basis. They were implanted in a high-purity Cooper plate, which provided a perturbation-free environment for the isomeric decay. Ion- γ coincidences were recorded and analyzed with the CRACOW software [4]. The experimental set-up is discussed in detail in [5].

The Time-Differential Perturbed Angular Distributions (TDPAD) method, based on the measurement of the Larmor precession of a spin-oriented nuclear ensemble in an external magnetic field *B*, was applied; the Larmor frequency $\omega_L = -\frac{g\mu_N B}{\hbar}$ is measured in the experiment. The magnitude and sign of alignment of the ensemble depend on the longitudinal momentum distribution [6] of the fragments. In order to preserve the orientation produced in the reaction, fully-stripped ions are separated at relativistic energies. Note that ions heavier than A = 80 produced and separated as fully-stripped fragments are available only at GSI.

To extract the g-factor, the γ -decay time spectra, measured at $\pm 45^{\circ}$ and $\pm 135^{\circ}$ with respect to the beam axis in a horizontal plane, were combined and compared with the theoretical R(t)function, $R(t, \omega_L) = \frac{3a_2}{4+a_2} \sin(2\omega_L t)$, where a_2 depends on details of the γ decay and the amount of orientation. The R(t) functions of the 1095 and 715 keV γ -rays for the outmost wing of the momentum distribution are presented in Fig. 1. They are out of phase, which is in disagreement with the published level scheme [1]. For the R(t) function of the 715 keV transition $\sim 10^4$ photopeak events were used in the data analysis, which sets a limit for such experiments.

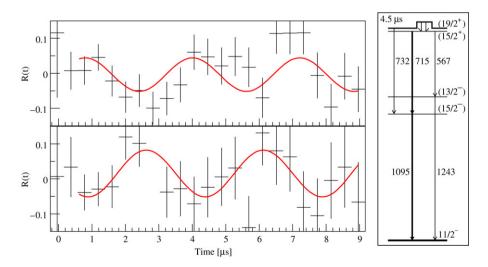


Fig. 1. Left: R(t) functions for the 1095 keV transition (up) and for the 715 keV transition (down) at the wing of the momentum distribution. Right: partial level scheme of ¹²⁷Sn, revealing the decay of the 19/2⁺ isomer [1].

The deduced value of the *g*-factor, $|g| \approx 0.16$, is in agreement with theoretical expectations based on the empirical *g*-factors, which yield a value $g(s_{1/2}^{-1}h_{11/2}^{-2}) \approx -0.156$ for the main component of the wave function, and with large-scale shell model calculations. These results will be discussed in detail elsewhere [7].

First results from the g-RISING campaign for the g-factor of the $19/2^+$ isomer in 127 Sn from relativistic fragmentation demonstrate that significant alignment ($\sim 10\%$) is observed in the outmost wing of the momentum distribution. The present experiment provides a benchmark (in terms of intensity of the isomer beam and number of detected γ -rays) for further studies of electromagnetic moments of isomers in nuclei yet farther away from stability.

Acknowledgments

This work was supported in part by the EC EURONS RII3-CT-2004-506065 project, the Bulgarian National Science Fund grant VUF06/05 and the Polish Ministry of Science and Higher Education grants 1-P03B-030-30 and 620/E-77/SPB/GSI/P-03/DWM105/2004-2007.

References

- [2] J.A. Pinston, J. Genevey, J. Phys. G 30 (2004) R57.
- [3] H.J. Wollersheim, et al., Nucl. Instr. Meth. Phys. Res. A 537 (2005) 637.
- [4] J. Grebosz, Comp. Phys. Communications 176 (2006) 251.
- [5] G. Neyens, et al., Acta Phys. Pol. B (2006) (in press).
- [6] I. Matea, et al., Phys. Rev. Lett. 93 (2004) 142503.
- [7] L. Atanasova, et al., 2007 (in preparation).

^[1] J.A. Pinston, et al., Phys. Rev. C 61 (2000) 024312.