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The first results from a series of experiments focused on the study of
the internal structure of nuclei at the extremes of N :Z ratio using isomer
spectroscopy are reported. These experiments represent the first of the
Stopped Beam section of the Rare Isotopes Investigations at GSI (RIS-
ING) project. Exotic nuclei were synthesized using relativistic projectile
fragmentation of ∼ 500 → 1000 MeV/u beams of 107Ag, 208Pb, 136Xe and
58Ni, or fission of 750 MeV/u 238U provided by the SIS synchrotron at
GSI. A detailed description of the RISING stopped beam set up is given,
together with a report of the performance of the associated gamma-ray
spectrometer array. Selected results of the first experimental campaign are
presented together with a discussion on the use of isomeric spectroscopy to
study GeV range nuclear fragmentation. Details on future research plans
of this collaboration are also outlined.

PACS numbers: 21.10.Tg, 23.20.–g, 25.70.Mn, 29.30.Kv

1. Introduction

The aim of the RISING (Rare ISotope INvestigations at GSI) collabo-
ration is to use GeV range beams from the GSI/SIS synchrotron to study
exotic nuclei produced through fragmentation. This production technique,
coupled to a powerful germanium array from the decommissioned Euroball
IV setup, plus the use of the FRS fragment separator for the selection and
identification of the produced ions makes a powerful tool for the study of
such nuclei. To date, two types of experiments have been conducted, the
first campaign used the RISING fast beam setup [1] aimed at two-step frag-
mentation and/or relativistic Coulomb excitation studies. A review of these
experiments can be found in [2]. The two other RISING setups used “stopped
beam”, either for isomer delayed γ-ray spectroscopy, which is the subject of
this paper or for g-factor measurements [3]. The RISING setup moved to
the Stopped Beam isomer spectroscopy configuration for the first time in
February 2006. In this configuration the 105 germanium crystals of the
RISING array (Fig. 1) are placed in a compact configuration around the
final focal point of the FRS where they surround a passive stopper made of
either perpex, copper or beryllium [4, 5]. Gamma-ray transitions depopu-
lating isomeric states can then be observed using the fragmentation isomer
spectroscopy technique as outlined in references [6–10]. Two experimental
campaigns have been performed to date, aimed at studying specific physics
including (i) evolution of shell closures around doubly magic nuclei and (ii)
N = Z symmetries. The current paper presents a description of the techni-
cal aspects of this setup as well as examples of the experimental performance
of the γ-ray array. The use of microsecond isomer spectroscopy as a general
tool to study the nuclear fragmentation process is also discussed.
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Fig. 1. Photograph of the RISING Stopped Beam γ-ray spectrometer.

2. Technical details

2.1. Production and identification of the exotic nuclei

Exotic secondary beams were produced using the projectile fragmenta-
tion of high-energy primary beams from the SIS synchrotron at GSI, incident
on 1 → 4 g/cm2 thick 9Be production targets. The FRagment Separator
(FRS) [11] was used in achromatic mode for the selection and identifica-
tion of the reaction products using a standard time of flight and energy loss
techniques [12]. Particle identification was achieved by the use of position-
sensitive plastic scintillators at the middle and final focal points of the FRS
to define the magnetic rigidities and velocities of the secondary ions. MUlti
Sampling Ionization Chambers (MUSIC) before the final focus of the FRS
provided energy loss signals from which the electric charge of the incoming
ion could be deduced. Further details of the particle identification procedure
can be found in [10]. An example from the RISING stopped beam experi-
ment with 107Ag primary beam is shown in Fig. 2. It should be noted that
the achromatic degrader at the central focal point of the FRS was also used
as a passive energy-loss device for charge state separation. The difference in
magnetic rigidity between the first and second stage of the fragment separa-
tor can be used to estimate the energy loss of the ion through the achromatic
degrader. This information together with the energy loss of the ions as mea-
sured at the final focal point using MUSIC detectors allows a unambiguous
charge state discrimination. This technique is of particular interest in case
of heavy, neutron-rich nuclei (see reference [13] for more details). As noted
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in reference [14], for high-Z nuclei this method of charge state selection can
only be achieved for high-Z nuclei with energies greater than 300 MeV per
nucleon. Thus the RISING setup at GSI is ideal for spectroscopic studies in
such heavy, neutron-rich systems produced following relativistic projectile
fragmentation reactions.
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Fig. 2. Typical identification plot from the 107Ag primary beam experiment. This

setting was centered on the transmission of fully stripped 90
45Rh ions.

2.2. The stopped RISING germanium array, geometry and electronics

In its Stopped Beam configuration the RISING array comprises fifteen,
seven-element germanium cluster detectors [15] from the former Euroball IV
array. The detectors were placed in three angular rings of five detectors at
51

◦, 90
◦ and 129

◦ to the primary beam axis at an average distance from
the centre of the array of approximately 22 cm. Each individual germanium
detector had two parallel pre-amplifier outputs which were sent to two sep-
arate branches of the data acquisition. One was a fully ‘digital’ branch and
provided the input signal for 105 channels within 30 Digital Gamma Finder
(DGF-4C) modules [16]. Three parallel CAMAC crates, each holding ten,
quad-input modules were used for this part of the electronics. The individual
DGF channel triggers were validated by a master trigger signal generated
from a fast plastic scintillator detector at the final FRS focal point. This
signal was sent to a DGF channel in each crate in order to provide an in-
ternal check of the synchronization of the DGF clocks and also to provide
a time-difference measurement between the arrival of an ion in the plastic
scintillator and the measurement of a delayed γ ray via the DGF γ-time sig-
nal. The clock frequency of the DGF modules was 40 MHz, corresponding
to a 25 ns time step. The maximum coincidence gate that could be achieved
using the DGF modules was 400 µs.
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The second output from the germanium preamplifier was sent to an ana-
logue timing branch composed of a standard TFA-CFD-TDC timing circuit.
The output of the CFD was sent to two separate TDC modules, one ‘short-
range’ (1 µs full range with a 0.31 ns/channel step) and the other ‘long
range’ (up to 800 µs with a 0.73 ns/channel step). The analogue branch
allows a precise definition of shorter-lived (∼ 10 ns) isomers.

2.3. Array performance: Efficiency and addback

The array performance was measured using radioactive sources both be-
fore and following the experimental beam time. The experimental condi-
tions were found to produce an energy resolution of less than 3 keV at
1.3 MeV. The photopeak γ-ray efficiency was measured with several low
intensity sources. To avoid dead time problems a pulser was used to emu-
late the plastic scintillator (which was used as the actual trigger during the
experiments). Since the interval between the trigger pulses is longer than
the acquisition dead time, the calibration is effectively dead time free. The
efficiency is then, for each crystal, the number of γ rays observed divided
by the number emitted during the live time of the acquisition. The former
value is the number of triggers multiplied by the width of the time gates of
the electronics.
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Fig. 3. Efficiency of the RISING array in its Stopped Beam configuration. Left:

Comparison of sum (open squares), addback (full squares) and analog timing

(triangles). Right: Efficiency for different stopper and positions. (Full circles)

7 mm perpex stopper, (empty squares) same stopper but source positioned 8 cm

on the left, (full squares) 12 mm perpex stopper, (triangles) 6 mm copper stopper.

Fig. 3 shows an efficiency curve for a mixture of standard γ-ray sources
placed in the middle of the Stopped Beam RISING array. During the ex-
periments several stoppers were used depending the ultimate physics aim.
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The attenuation of gamma rays following implantation in a given stopper
depends on the stopper composition and on position and depth of the ion im-
plantation. Fig. 3 shows the variation of the photopeak efficiency for several
stoppers and as a function of the position of the γ-ray source. A GEANT4
simulation of the array is ongoing [17]. The preliminary results of this sim-
ulation reproduce our experimental data shown here. An “inter cluster” ad-
dback routine (i.e., inclusion of Compton events scattered between crystals
in neighbouring cluster detectors) is also being developed to increase fur-
ther the absolute efficiency for low multiplicity events [18]. The full squares
in Fig. 3 represent the efficiency with a Cluster Compton ‘addback’ rou-
tine allowing γ-ray multiplicities upto 4 per cluster such that the events are
registered within 400 ns of each other. The triangle symbols represent the
efficiency when requiring information in the timing (i.e., TDC) branch of
the acquisition. The difference in low energy efficiency arises due to the
different discriminator types and settings, the leading edge type of the DGF
having a sharper cutoff than the CFD of the analog timing branch. Note
that the high efficiency below 100 keV arises from the absence of absorbers
in front of the germanium cluster detectors.
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Fig. 4. Left: Time difference between hits in the addback versus summed γ-ray

energy in the cluster detectors. Right: Time width of the prompt flash (see text

for details).

Fig. 4 shows a two dimensional matrix of γ-ray summed energy versus
time difference between γ-ray events used in that addback event. One can
observe a significant increase in counts in that matrix for time difference less
than 400 ns. The time width profile (i.e., wider at lower energies) arises due
to the fact that low energy γ rays typically interact in the outer most part
of the crystal giving rise to the well known ‘time walk’ effect.
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2.4. Experimental performance of the stopped beam array

Stopping ions with energies of several GeV in view of a high-efficiency
γ-ray spectrometer such as RISING can be problematic due to the atomic
radiation produced, the so-called ‘prompt flash’ [19]. This can cause multi-
ple germanium detectors to fire with the prompt arrival of the ion and thus
significantly reduces the effective efficiency for the measurement of delayed
isomeric decays in the same event. This was a major concern in the previous
fragmentation isomer campaign at GSI (see Ref. [8]) causing losses of up to
80% of the effective γ-ray efficiency. The high granularity of the 105 element
RISING array is intended to overcome this problem. It was found that the
flash multiplicity (i.e. number of crystal that fire during the ion implanta-
tion) depends on the energy of the implanted ion in the stopper [20]. A more
systematic study, taking into account the stopper material and implantation
position and depth is underway. Typical mean flash multiplicities range be-
tween 5 out of the total 105 individual detectors for the lighter ions (such
as those in the 90Rh setting) to 15 for the heavy nuclei (e.g., 204Pt). In the
determination of the minimum isomeric lifetime that can be measured, the
time width of this prompt flash component is of significance. Fig. 4 shows
a typical prompt flash time profile. The dotted grey line is the time profile
of the flash in the absence of any further software selection, while the full
line represents events of multiplicity lower than 4 in any cluster and valid
γ-ray energy in the DGF. The full grey line is with the proper energy in the
DGF condition only. The width of the prompt flash is typically ∼ 30 ns.
The triple peak structure apparent here has been observed in the RISING
fast beam campaigns [21] and is believed to be caused by fast,light particles
produced either in the stopper or in the final focal plane degrader.

The typical flight time in the FRS being a few 100 ns and the maximum
gate achievable with the DGF being of 400 µs, the setup is highly sensitive to
γ-ray decays from isomers with lifetimes in the range 100 ns → 1 ms. Decays
with large internal conversion coefficients are hindered in their decays in
flight since they are typically fully stripped of electronic electrons. In such
cases, the width of the prompt flash can become a limiting factor for the
observation of short-lived (∼10 ns) isomers such as reported in reference [9].

3. Initial nuclear structure and reaction mechanism studies

Two RISING Stopped Beam experimental campaign have been performed
to date. The first campaign begun with an experiment using a 107Ag beam
with the aim of producing nuclei on and around the N = Z line [5]. Odd–
odd N = Z nucleus are of particular interest since they allow the mapping
of the T = 1 and T = 0 components of the nucleon–nucleon interaction.
The experiment showed evidence for isomeric decays in the N = Z nuclei
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82
41

Nb and 86
43

Tc, the results of which are presented elsewhere in these pro-
ceedings [22, 23]. In the next experiment a 208Pb 1 GeV/A beam was used
to produce nuclei along and ‘west’ of the N = 126 shell closure. The initial
results from this study experiments are presented in [13] and [24,25]. Finally
in the first phase of experiments, a beam of 58Ni was used to produce 54

28
Ni

and 54
26

Fe to study mirror symmetries in those two T = 1 mirror nuclei, the
initial results of this work can be found in [26].
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prompt flash (600 ns to 6 µs).

During July 2007 a second Stopped RISING experimental campaign took
place with the same setup, with the specific aim of studying nuclei in and
close the N = 82 shell closure. The exotic nuclei were produced using
by through fragmentation of an 136Xe beam and following the relativistic
projectile fission of an 238U beam. The data analysis for both of these
experiments is currently in progress [27].

Part of the beam time was used to pursue nuclear reaction studies with
the aim of using isomeric states as a probe to test how much spin is involved
in a fragmentation reaction (as in reference [28]). Indeed, for a given iso-
mer an estimate can be made of the isomeric ratio i.e., the proportion of
times a given nucleus populates this isomer compared to the total number
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of times the nucleus is created in the reaction. These type of studies are
of particular interest for high-spin isomers such as those in 148Tb or 147Gd
that were produced in the Stopped RISING experiment using the 208Pb pri-
mary beam [25]. In such reaction studies having access of several types of
observables in the same experiment allows a stringent test on the modelling
of the physical reaction population and decay processes [29]. To this end,
part of the 107Ag primary beam time was used to perform Bρ scanning over
a wide region of proton-rich nuclei in order to make measurements of nuclear
production cross section and isomeric ratios (see Fig. 5). The modelling of
the spin input in nuclear projectile fragmentation reactions follows the same
formalism to that of the transfered linear momentum. Experimental access
to the former is available through the position in the central focal point of
the FRS. Thus it should be possible to make angular momentum population
studies with respect to the transfered momentum for a wide range of final
products using the 107Ag. This analysis is currently in progress.

4. Summary and conclusions

Technical details of the RISING Stopped Beam setup have been pre-
sented together with an overview of the experiments carried out to date
with this device. The setup will be upgraded with the addition of an active
stopper which will allow the detection of the β decays from the implanted
ions. This will allow β delayed γ-spectroscopy to be performed for heavy,
exotic nuclei using a technique similar to that outlined in reference [30].
A proof of principle of this correlation can be found in [31].
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