
ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.1 (1-15)
Computer Physics Communications ••• (••••) •••–•••
www.elsevier.com/locate/cpc

The Cracow code—an interactive method of sophisticated online analysis

Jerzy Grębosz a,b,1

a The Henryk Niewodniczański Institute of Nuclear Physics (IFJ PAN), Kraków, Poland
b Gesellschaft fuer Schwerionen Forschung (GSI), Darmstadt, Germany

Received 3 August 2006; accepted 28 September 2006

Abstract

A crucial issue in many complex experiments is the flexibility and ease of the online data analysis. Here we present an easy-to-learn and
intuitive-to-operate method of interactive online analysis for use in projectile fragmentation induced gamma-ray spectroscopy experiments at the
GSI facility (the RISING experiments). With a sequence of dialogue boxes the experimenter can create a complex definition, which will produce
a conditional spectrum. These definitions can be immediately applied by the online analysis, which runs in parallel as a separate program. Some
problems regarding the logic of gating conditions are discussed.
© 2006 Elsevier B.V. All rights reserved.

PACS: 29.85.+c; 29.30.Kv

Keywords: Online analysis; Data acquisition and analysis system; Event sorting
1. Introduction

During in-beam nuclear physics experiments, which require
complicated apparatus, one of the crucial issues is the quality
of the online data analysis. High quality online analysis allows
the right decisions to be made about possible changes to the
settings of the running experiments. The RISING [1] experi-
ments use the cluster detectors from the former EUROBALL IV
germanium-detector array [2]. Although RISING is similarly a
γ -ray spectroscopy apparatus, there is a fundamental difference
in the online analysis used by these two instruments. In the case
of EUROBALL (installed at the beam line from the VIVITRON
accelerator) the experimenter was sure what kind of projec-
tile (i.e. the ‘beam’) was hitting the target. This is different
for the RISING experiments. RISING receives the beam from
the GSI Fragment Separator FRS [3]. During typical usage the
FRS separator gives rise to a ‘cocktail’ beam consisting of sev-
eral secondary projectiles. Several types of isotope of numerous
elements hit the user’s final target, it is the user’s responsibil-
ity to select events associated with the desired projectile. The

E-mail address: jerzy.grebosz@ifj.edu.pl.
1 Present address: Institute of Nuclear Physics, Polish Academy of Sciences

(IFJ PAN), ul. Radzikowskiego 152, 31-342 Cracow, Poland.
Please cite this article as: J. Grębosz, The Cracow code—an interactive method of s
doi:10.1016/j.cpc.2006.09.006

0010-4655/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2006.09.006
user can do this using algorithms implemented in the online
analysis program. To make this feasible, the data acquisition
system (DAQ) collects not only data from the RISING germa-
nium detectors, but also from many particle detectors in the
FRS (such as: multiwire chambers, scintillators, MUSIC ion-
isation chamber, etc.). After using complicated algorithms, the
online analysis program should finally show two-dimensional
scatter plots, on which the different projectiles (isotopes) can
be separated.

Unfortunately there is no single universal particle identifica-
tion algorithm. Depending on the experiment there are different
procedures used for selecting a desired projectile from the rest
of the projectiles hitting the target/final focus. This is why ex-
perimenters need a tool which is flexible, enabling them to
produce the highest resolution selection for each particular iso-
tope.

Complicated experiments require complicated software.
This implies that scientists present during the experiment are
dependent on the one or few people who are able to modify
the online analysis program and instantly adapt it for a specific
situation.

Sometimes, when everything goes wrong during a night
shift, a professor might ask: “Could we see this spectrum—
gated by time, by this isotope coming from the Fragment Sep-
ophisticated online analysis, Computer Physics Communications (2006),

http://www.elsevier.com/locate/cpc
mailto:jerzy.grebosz@ifj.edu.pl
http://dx.doi.org/10.1016/j.cpc.2006.09.006


ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.2 (1-15)

2 J. Grębosz / Computer Physics Communications ••• (••••) •••–•••
arator, and by the position of fragments on this scintillator?”
Very often the answer is: “No, because the Ph.D. student, who
knows how to make it, is currently sleeping”. This sounds like
an anecdote, but is not it so?. . .

As a technician, I always keep in my mind the following
bitter saying: “The humanists are the people who know ‘what’,
but do not know ‘how’. The technicians. . .—they would know
‘how’, but they do not know ‘what for’ ”. There is something
wrong in this attitude. Why should it not be possible to combine
these two skills? Why not introduce to the online analysis an
instrument that the people who have brilliant ideas can use, so
that they can check their ideas by themselves, instantly; without
the necessity of reading a long manual.

This was the inspiration for the work described in this paper.

2. Online analysis

RISING is an example of experiments where the data is col-
lected using “event by event” acquisition. Its data-acquisition
system DAQ (called MBS) [4] collects events and stores infor-
mation on disk, but does not provide any data viewing facilities,
this is the work of the online analysis program. Therefore, the
basic task of the online analysis is to extract the events (i.e.
unpack them from the blocks of data) and to display one-di-
mensional histograms (spectra) of the raw data. By watching
these (typically) hundreds of individual spectra, the experi-
menter can monitor the operation of the experiment’s detectors
and their associated electronic modules.

However, in most cases, the experimenter would like to see
more. Thus, the real task of the online analysis is to take the
events, coming one by one, from the data acquisition system,
and then analyse them using algorithms specially dedicated to
that particular experiment. These algorithms are usually care-
fully prepared before the experiment. By monitoring these spec-
tra, the scientist would hope to see the first signs of a success-
ful experiment. If they cannot see the expected results of the
analysis, they may wish to alter the algorithms, in particular, al-
Please cite this article as: J. Grębosz, The Cracow code—an interactive method of
doi:10.1016/j.cpc.2006.09.006
gorithms used to gate other online created histograms, or they
may decide to change the particle separation or beam settings.
For example, they may wish to see newly defined spectra and
to collect them only when some specific conditions occur.

The current article describes one way of performing the on-
line analysis which enables the experimenter the freedom to
create any kind of new one or two-dimensional spectrum, gated
by sophisticated conditions, which are also user defined. This
program does not require the experimenter to have significant
knowledge of programming, nor does it require any modifica-
tion of the online analysis program. There is no need to recom-
pile the program or to stop the running online analysis program
to update the gating conditions. All that is needed is the spe-
cially prepared Graphic User Interface (GUI) program—called
‘Cracow’.

Note, that the package contains two distinct programs. The
first program, ‘spy’ is run as a “command line” program and
is responsible for making the online analysis. The second pro-
gram, ‘Cracow’, has a graphic user interface which allows the
spectra produced by spy to be displayed. It also provides the
methods by which the experimenter can instruct the online
analysis program to create the new, sophisticated conditional
spectra.

3. ‘Cracow’ GUI

As shown in Fig. 1, there are two programs at work, but this
article concentrates only on the ‘Cracow’ code and, in partic-
ular, on its methods of creating the user-defined spectra and
user-defined conditions.

The main goal in the design of the ‘Cracow’ code was to
make it sufficiently experimenter friendly that the user does not
need to read a manual. Using the ‘Cracow’ GUI, the experi-
menter follows sequences of dialogue boxes—called ‘creators’
(or ‘wizards’). By asking questions and expecting straightfor-
ward answers the wizards can create any kind of spectra, gated
by many different types of conditions. The products of these
Fig. 1. Schematic of the RISING online analysis. The two separate programs ‘spy’ (which analyses events), and ‘Cracow’ (which allows on-line viewing of the
spectra) communicate only by a shared disc. Using the graphic user interface of ‘Cracow’ it is possible to tell the ‘spy’ to start collecting a new kind of conditional
(i.e. gated) spectrum.
sophisticated online analysis, Computer Physics Communications (2006),



ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.3 (1-15)

J. Grębosz / Computer Physics Communications ••• (••••) •••–••• 3
wizards, which are definitions of spectra or definitions of con-
ditions, are stored on the disk as text files. (In this way they are
‘persistent’ and may be used in all future analysis.)

Once finished working with the wizard, ‘Cracow’ checks
whether the online analysis program (‘spy’) is currently run-
ning. If yes, it is automatically informed about the new “wish”
of the experimenter. The ‘spy’ program then:

– opens the definitions of the new spectra and the new condi-
tions,

– creates the corresponding objects in the program,
– immediately starts to increment the new spectra with data

coming from the experiment.

The experimenter using the same ‘Cracow’ program can then
observe the result of their work, i.e. the new spectra collected
using his/her newly introduced gating algorithm.

4. Incrementer

The key concept of the system described in this article is the
so-called incrementer. An incrementer represents a variable in
the online analysis program; a variable, which can be used to
increment any given spectrum. Three types of variables from
the RISING online analysis C++ ‘spy’ program can become
incrementers: int, double, bool.

Of course not every variable in the program is worth being
defined as an incrementer. This decision is made by the sci-
entist who writes the online analysis program. If he decides
that a variable may be useful as an incrementer, he defines a
meaningful name which is then included in the list of the avail-
able incrementers. The GUI program reads the list of names and
presents them on the screen. At any time, the experimenter can
select the desired incrementer from such a list, when for exam-
ple they need to create a histogram of a variable.

An example of an incrementer available in the RISING on-
line analysis program is the energy of a γ -ray detected by one
of the germanium detectors. The DAQ delivers the raw value
of this data variable. Having this raw data, the online analysis
program produces a gain-matched (calibrated) version and if re-
quired, a Doppler corrected energy. These three variables, raw,
calibrated and Doppler corrected, can be chosen to be accessi-
ble as incrementers. As there are 105 such individual germa-
nium detectors in the RISING array, by this action there would
be 105 ∗ 3 = 315 incrementers available.

5. Some incrementers must be validated

Most of the users of the ‘Cracow’ GUI do not have to under-
stand the concept of incrementers. They can simply treat them
as variables in the analysis program. The user should however
understand that in some events these ‘variables’ (incrementers)
may contain undefined values.

Some incrementers always have a physically meaningful
value, for instance, a variable which represents the multiplicity
of germanium crystals which fired in a particular event. Since
the online analysis program registers how many crystals fired in
Please cite this article as: J. Grębosz, The Cracow code—an interactive method of s
doi:10.1016/j.cpc.2006.09.006
a given event, the incrementer representing this variable always
contains a physically meaningful value.

However not all incrementers are of this nature. For example,
in the RISING experiments there is a multiwire chamber which
is used to trace the trajectory of projectile fragment ions. One
expects that for any particular event both the ‘left’ and ‘right’
cathodes will deliver signals in the ‘data’. These two data values
are used by the online-analysis program to calculate the hori-
zontal position of the ion in millimetres. The calculated value
of this geometrical position is a useful incrementer, usually
containing a value in the range [−150,+150]. Unfortunately
sometimes only one cathode delivers the data. In this case it is
impossible to calculate the position of the ion.

What, in such a case, should the contents of the incrementer
representing the geometric position be? Zero? No, zero means
that the geometric position of the ion is precisely centred in the
axis of the beam line.

There must be another way to inform the rest of the analy-
sis code (and the user of the incrementer) that in this particular
event it was not possible to calculate the position (i.e. that this
variable does not contain a meaningful value). For this purpose
some incrementers are associated with another Boolean value
which validates the current contents of the incrementer. In the
case of the multiwire chamber this is a flag noting if the calcu-
lation of the position was successful or not.

The name of an incrementer which has a validator usually
ends with the word “_when_. . .”. For example:

mw41_x_when_ok

which means: Multiwire chamber named “mw41”, its horizon-
tal position x when its calculation was successful. This suffix
“when. . .” informs the user about the nature of the incrementer.
If the ‘Cracow’ GUI notices the use of an incrementer which
is validated, the GUI may also ask us how to behave when the
incrementer is not valid.

6. The user-defined spectra creator

The online analysis program of the RISING experiments
produces typically more than 2000 standard spectra related to
the different detectors used in the experiment. Many are defined
by default, primarily because they are used the most often. If the
experimenter would like to see a special spectrum, he can make
it using a special instrument, a spectra creator (a user-defined
spectra “wizard”) available in ‘Cracow’ GUI. Now we will see
the method of creating a user-defined spectrum in a “step by
step” manner.

The first thing to do is to choose the name of the new
spectrum. The chosen name is always preceded by the pre-
fix “user_”. This later helps to distinguish user-defined spectra
from the standard spectra produced in the online analysis pro-
gram by default.

The first page of the wizard is shown in Fig. 2. (As displayed
in the figure, the spectrum name suggests that the histogram
will define the sum of energy spectra of the 7 Germanium crys-
tals belonging to the cluster detector named ‘B’.)
ophisticated online analysis, Computer Physics Communications (2006),



ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.4 (1-15)

4 J. Grębosz / Computer Physics Communications ••• (••••) •••–•••
Fig. 2. The user can define a 1D or 2D spectrum. Depending what the user
chooses the following pages of the wizard look differently.

Fig. 3. Choosing the range of a 1D spectrum.

The second decision on this page of the wizard, concerns the
dimension of the spectrum. The user can select a one-dimen-
sional spectrum or a two dimensional matrix (scatter plot). If the
user chooses a 1D spectrum and presses the button ‘Next’, then
the following page of the wizard requests information about the
range and binning of the spectrum. (See Fig. 3.)

Experience shows that some users mix the concepts of “bin”
and “channel”. In order to help clarify these concepts there fol-
lows a graph explaining the idea of binning.

On the following page of the wizard (see Fig. 4) the exper-
imenter defines which variables from the online analysis pro-
gram may increment this spectrum. There is a table in which
the experimenter places the names of the chosen incrementers.
During the online analysis the chosen incrementers will incre-
ment the spectrum for every event (assuming it is valid and no
further condition is applied).

The table shown in Fig. 4 already contains a list of seven
incrementers. They have rather long names, intended to be self-
explanatory. The user does not have to type these names but
rather selects them from a list. In the lower part of the dialogue
Please cite this article as: J. Grębosz, The Cracow code—an interactive method of
doi:10.1016/j.cpc.2006.09.006
Fig. 4. A list of variables chosen by the user to ‘contribute’ to their spectrum.
Placing more than one incrementer here creates the sum spectrum of those
incrementers. Each of the (valid) incrementers will then increment the same
spectrum.

Fig. 5. A list of all incrementers offered by the ‘spy’ program, visible in the
special dialogue box.

page there is a button called “Add one or more incrementers”.
This button opens a new dialogue box with the list of all the
available incrementers (see Fig. 5).

There are circa 2500 available incrementers which are listed
alphabetically. To ease the orientation, the names of the incre-
menters consist of the name of the object (detector) which the
incrementer belongs to, this is then followed by the description
of the meaning of a particular incrementer (such as energy, po-
sition, time, etc.).

For example, looking at Fig. 5, the last but one incrementer
in this dialogue box has the name “sci43_position_when_ok”.
This name explains to the experimenter that the incrementer
sophisticated online analysis, Computer Physics Communications (2006),



ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.5 (1-15)

J. Grębosz / Computer Physics Communications ••• (••••) •••–••• 5
Fig. 6. The user defined spectrum may be incremented under some condition.
The user can choose any condition from the list, or create a new condition.

is defined in the scintillator detector called “sci43” and it
represents the position calculated by this object. The suffix
“when_ok” informs the user that incrementer does not always
contain a sensible value (it has a validator checking whether it
was possible/impossible to calculate the position).

By knowing this naming convention the user can find the in-
crementer of interest from this list. There is a tool which makes
such a search easier. At the bottom of the window there is a text
filter, which allows the list to only include incrementers which
pass a given filter.

Returning to the example, using the filter one can display
only those incrementers which represent the calibrated (gain-
matched) energy data of all the germanium detector crystals. In
this case the experimenter is interested only in those belonging
to cluster ‘B’, they can be selected and confirmed by pressing
the OK button. The dialogue window disappears and the se-
lected incrementers are automatically placed in the table shown
on Fig. 4.

The ‘Next’ button moves us to the last page of the wizard.
(See Fig. 6.)

Here the user may apply some condition, but if a condition
is not needed, they can finish the work of the wizard. By this
the definition of the spectrum is stored on the disk as a text
file. The ‘Cracow’ GUI knows whether the online analysis pro-
gram (‘spy’) is currently running, so it can command the ‘spy’
to read the definition prepared on the disk. The ‘spy’ reads the
definition, and starts to collect the desired spectrum. The new
spectrum can be observed immediately using the ‘Cracow’ GUI
spectra viewer in the same way as any other standard spectra.
The only difference is that the name of our spectrum starts with
the prefix “user_”.

Practice shows that the experimenters learn this tool very
quickly. Some may think that the names of incrementers and
their meaning are the most difficult things here. On the contrary,
the names of the incrementers are self-explanatory for experi-
menters. These are just the general terms which are used while
working on experiments and the algorithms of the analysis.

The experimenter can define many different user-defined
spectra. At anytime they can also modify an already existing
definition. If the definition of some new spectrum is going to be
similar to the one which already exists, there is a time saving
Please cite this article as: J. Grębosz, The Cracow code—an interactive method of s
doi:10.1016/j.cpc.2006.09.006
Fig. 7. If the user decided to create the definition of a 2D spectrum (matrix), the
second page of the spectrum wizard looks different—it asks questions about the
size of two axes instead of just one.

option available of cloning the definition and then modifying
this ‘clone’.

7. Two-dimensional spectra (matrices)

The wizard is a powerful tool in the GUI. It asks questions
“step by step” and, depending upon the answers, adapts the fol-
lowing pages of the wizard to the current situation. Therefore if
on the first page of the wizard the user decides that a spectrum
needs to be two-dimensional, the next page will look different
(see Fig. 7) to the one-dimensional option.

In the case of choosing a 2D spectrum, after the page dedi-
cated to incrementers of the X-axis (Fig. 4), there is a new page
which asks a similar question about the incrementers used for
the Y -axis. For example, if the user wishes to construct a ma-
trix of “γ -time versus γ -energy” the incrementers representing
the γ -energy should be placed on the X-axis while those repre-
senting the γ -time on the Y -axis. Fig. 8 shows this example.

In one table the user can place as many incrementers, as they
want. What does this actually mean for a 2D spectrum? In the
case of only one incrementer for the X-axis of the matrix, and
only one for the Y -axis it is clear that the user wants the spy
program (during the analysis of each event) to increment the
matrix at a point with the following coordinates P(x, y), where

x is current value of the incrementer X and
y is current value of the incrementer Y.

But, as mentioned earlier, the user can apply more than one
incrementer on a particular axis.
ophisticated online analysis, Computer Physics Communications (2006),



ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.6 (1-15)

6 J. Grębosz / Computer Physics Communications ••• (••••) •••–•••
Fig. 8. The matrix must have a list of incrementers responsible for y coordinates
of the incremented point P(x, y). Below the list of incrementers there is set of
radio buttons, which allows the choice of one of three modes of work. This is
important if there is more than one item on the X or Y lists.

For example, for such a user-defined spectrum where there
are 7 incrementers defined for the X-axis and also 7 defined for
the Y -axis, there is a table produced as follows:

Table of X incrementers Table of Y incrementers

x1 y1
x2 y2
x3 y3
x4 y4
x5 y5
x6 y6
x7 y7

How should the online analysis program interpret this during
the analysis of a particular event? There are 3 sensible interpre-
tations, they are outlined in the following sections.

7.1. All possible combinations of incrementers

The online analysis program understands that the user wants
to increment points defined by every combination of the x and
y incrementers for each event.

P(x1, y1) P (x1, y2) . . . P (x1, y7)

P (x2, y1) P (x2, y2) . . . P (x2, y7)

. . .

P (x7, y1) P (x7, y2) . . . P (x7, y7)

This is the most general solution. If a user wants this, the
‘Always’ option on the set of radio buttons in Fig. 8 should be
selected.

7.2. Incrementers from the same detector

In the case of the user defining the matrix “γ -energy versus
γ -time”—they place the incrementers representing γ -energy in
Please cite this article as: J. Grębosz, The Cracow code—an interactive method of
doi:10.1016/j.cpc.2006.09.006
the table Y and the incrementers representing corresponding
γ -times in the table X. For this type of matrix the user only
wants combinations of the γ -ray energy data coming from the
same detector as the γ -time data. Generally there is no physical
sense in using the combination of energy data from one detec-
tor, with the time data from another, so the user is interested in
the combinations

P(xk, yj ) when xk, yj are incrementers from
the same detector (i.e. k ≡ j).

Note. This does not mean that the incrementer from row 3 of
the X incrementer table will be used together with the incre-
menter from row 3 of the Y table. Such a solution would not be
user friendly, because it requires that the user places his incre-
menters in a strictly defined order—this is a potential source of
errors and time consuming.

The user friendly approach is different; the user should not
think about the rows in the table, but about the meaning of
the incrementers. To facilitate this, the online analysis program
(‘spy’) does not care about the numbers of the rows. The user
can place their incrementers in the tables in any order. The ‘spy’
program is able to recognise which two incrementers belong to
the same detector, and can use them to increment the matrix.

If the user wants this interpretation, he should select the
‘when X & Y are from the SAME detector’ option on the set of
radio buttons shown on Fig. 8.

7.3. Incrementers from different detectors

If the experimenter is defining the coincidence matrix “γ –γ

energy”, they place the same incrementers representing the
γ -energy in both tables X and Y . Now they are interested in
a different combination of listed incrementers.

If, continuing the example, it is going to be a γ –γ energy
coincidence matrix of the germanium crystals belonging to the
cluster called ‘B’ they choose 7 energy incrementers for the
X-axis, and the same 7 incrementers for the Y -axis. But now the
desired combinations are different. In this case, the user wants
to increment their matrix only for the points:

P(xk, yj ) where xk, yj are incrementers from
different detectors (i.e. k �= j).

Again, here the k and j do not mean the row in the incre-
menter tables, but rather the detector which delivers this data.

In other words, in the case of coincidence matrix γ –γ en-
ergy, the user is interested in all combinations of energies of the
γ quanta, except the situation where the x and y incrementer is
exactly the same. (This would create on his matrix a diagonal
line.)

If the user wants this interpretation—they should select the
second option on the set of radio buttons shown on Fig. 8.

8. “ALL. . .” collective-incrementers, a list of other
incrementers

Very often the user would like to create the sum spectrum of
many variables/incrementers, for example, a sum spectrum of γ
sophisticated online analysis, Computer Physics Communications (2006),



ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.7 (1-15)

J. Grębosz / Computer Physics Communications ••• (••••) •••–••• 7
energies registered by all of the 105 germanium crystals. Such
a “total” spectrum can be easily defined by placing on the list
of X incrementers, the 105 incrementers representing the de-
sired (calibrated) variables. However this can be inconvenient.
To make such a task easier, there are some special, so-called,
collective-incrementers, which are equivalent to the list (collec-
tion) of incrementers of the same kind. So, for instance, the long
list of incrementers:

cluster_crys_A_1_energy_cal,
cluster_crys_A_2_energy_cal,
cluster_crys_A_3_energy_cal,
. . .

cluster_crys_R_7_energy_cal

can be substituted, by just one collective-incrementer called:

ALL_cluster_crys_energy_cal

The collective-incrementers (users like to call them:
“ALL. . .” incrementers) save a lot of work when defining a
spectrum. They are useful, when there are many detectors of
the same kind (for example: many germanium cluster detectors,
many Miniball detectors [1], many Hector BaF detectors [5]).

When using the “ALL. . .” collective-incrementers the defin-
ition of the γ –γ energy coincidence matrix is very simple, we
just:

– place one collective-incrementer ALL_cluster_crys_ener-
gy_cal on the list of X-axis incrementers,

– place the same collective-incrementer ALL_cluster_crys_
energy_cal on the list of Y -axis incrementers,

– we select the option that we are interested only in com-
binations where the particular incrementers (hidden inside
these two “ALL. . .” collective-incrementers) are from dif-
ferent germanium crystals.

9. Manager of the user-defined spectra

The experimenter can create many user-defined spectra and
all of them are on a special list handled in ‘Cracow’ GUI by a
user-defined spectra manager. This manager allows us to mod-
ify existing definitions, remove, clone, or create brand-new. Af-
ter any such change, the user has the option to immediately send
his request to the currently running ‘spy’ (online analysis pro-
gram). If ‘spy’ is currently not running, the changes will wait
on the disk until the ‘spy’ has started next time.

10. User-defined conditions

The experimenter often needs to increment his user-defined
spectrum only under specific condition. In the case of the RIS-
ING experiments, the most obvious condition is the selection
of fragments which come out of the Fragment Separator and hit
the target. The experimenter wants to increment his gamma-ray
energy spectrum only when the target was hit by the desired
projectile (fragment).

Of course there are also less obvious conditions, some of
them are invented ad hoc just to see what is wrong with the ex-
periment. So it is very important to give the user freedom over
Please cite this article as: J. Grębosz, The Cracow code—an interactive method of s
doi:10.1016/j.cpc.2006.09.006
Fig. 9. User-defined spectra and user-defined conditions are separate objects in
the C++ program. The user can assign any user-defined condition to affect any
user-defined spectrum. The same condition can be assigned to more than one
spectrum.

creating conditions. The user can define his condition swiftly
online. The user-defined condition, once created by the user, is
stored on the disk as a file, and can be used in all future analy-
sis.

In the software described here, the condition is an indepen-
dent object. The user creates the condition and may assign it to
a user-defined spectrum. One condition can be assigned to more
than one spectrum, see Fig. 9.

In this figure we see that a user-defined spectrum can have
at most one condition assigned to it. (This is not a limitation,
because conditions can be created, which contain a nested logic
expression of other conditions.)

11. Condition wizard

The experimenter can create a new condition, or clone an
existing one using the condition manager provided by ‘Cra-
cow’ GUI. As conditions can have very complicated logic, the
process of creating the condition is supported by a special in-
strument called a condition wizard. Let’s look at it.

The first page of the wizard contains the simple question
about the name of the object representing the condition. The
user will refer to this name later when assigning the condition
to spectra. To understand better the following, more difficult
pages of the wizard, let’s try to predict what elementary situa-
tions the user would like to test as a condition.

– Sometimes the user just wants to set a simple gate on one
variable. For example, he wants to test if some energy is
in the channel range 500–520. This kind of elementary
condition we will call a one-dimensional elementary con-
dition.

– Sometimes the user observes a matrix (created by two
incrementers X and Y )—and he would like to have a con-
dition selecting a fragment from this matrix, marked by a
polygon with the shape of a banana, or a cloud. This kind
of elementary condition we will call a two-dimensional el-
ementary condition.

Actually, all we need are these two types of conditions. How-
ever, experience shows that the conditions the RISING experi-
ophisticated online analysis, Computer Physics Communications (2006),



ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.8 (1-15)

8 J. Grębosz / Computer Physics Communications ••• (••••) •••–•••
Fig. 10. A page of the condition wizard, which allows the creation of an alter-
native (OR) of 1D elementary conditions.

menters need, are more complex. Every complicated condition
though, can be constructed from these two elementary types,
but. . . with a lot of clicking. So this approach would be too ele-
mentary and cumbersome. This is why the conditions available
in ‘Cracow’ GUI are more complex. They allow more complex
combinations of elementary conditions to be defined.

The conditions supplied by ‘Cracow’ GUI can be combina-
tions of the following expressions:

– alternative of some 1D elementary conditions,
– conjunction of some 1D elementary conditions,
– alternative of some 2D elementary conditions,
– conjunction of some 2D elementary conditions,
– conditions of other conditions.

These five ways of defining conditions are available on the
five following pages of the wizard. If the user does not need one
of them—they simply leave this page empty.

11.1. “OR list” of the 1D elementary conditions

Fig. 10 shows a page of the wizard, where we can place a
one-dimensional elementary condition.

To specify this part of the condition we should choose a
variable and set a gate on it. It is easy: in the first row of the
table there is a place for the variable name (the desired vari-
able can be selected from a list of incrementers). Then, in the
next columns, we can type two values: lower and upper lim-
its of the gate. This is enough to create a definition of a simple
condition—but very often the users need more.

If we want to have another gate on another variable, then it
can be placed in the next row of this table. We can place in the
rows of this table as many elementary conditions as we want.
By this we create a list of elementary conditions. This list of
elementary conditions has a logical value true, when at least one
of them is true. More formally speaking, here the elementary
conditions are creating the alternative (OR) of all of them.

row1 ∨ row2 ∨ row3 · · · .

Please cite this article as: J. Grębosz, The Cracow code—an interactive method of
doi:10.1016/j.cpc.2006.09.006
Fig. 11. If the user wants to create the conjunction of 1D elementary condi-
tions, he should also specify how to precede if some of the incrementers do not
contain the valid value. In the case of the alternative (OR) gating conditions it
was not important, such a row with the elementary condition could be treated
as false. With conjunction it is different; sometimes we need to treat it as true,
sometimes as false.

11.2. “AND list” of 1D elementary conditions

If the user prefers not the alternative, but the conjunction of
his elementary conditions—the wizard offers this possibility on
the next page, see Fig. 11.

At first glance, this page looks like the previous one, but
there is an important difference. If we want to check the fol-
lowing conjunction

row1 ∧ row2 ∧ row3 · · ·
we should remember that sometimes the variable (incrementer),
used in a row of this table, may not contain the meaningful value
(because, for example, its detector did not fire). How should one
make a conjunction of rows in such a case?

The quick answer: “let’s treat this row as false” may not be
a good solution. Imagine we want a condition telling us that all
the registered γ quanta have their times in the channel range
500–600. Creating this condition we put the corresponding 105
γ -time variables (incrementers) in this table and we specify
range 500–600. This would be wrong. By doing this we are
creating a conjunction, which is almost never true, because it
highly unlikely that all 105 detectors fire in the same event.

So treating a row with an incrementer from a detector which
did not fire—as false—was not a good choice. Another possible
answer: “the row with the variable (incrementer), which does
not have a meaningful value, should be treated as true”—may
also not be a good solution. Imagine, we want the conjunction
of the elementary conditions related to the position of the ion as
registered by the multiwire chambers.

mw41_x_when_ok is in range −5,+5
mw42_x_when_ok is in range −5,+5

This condition should be true, when the horizontal position
given by the multiwire chamber mw41 and the horizontal po-
sitions given by the multiwire mw42—are in a certain, small
range. Unfortunately, in some events, one of these positions
may be impossible to calculate (because the related multiwire
sophisticated online analysis, Computer Physics Communications (2006),



ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.9 (1-15)

J. Grębosz / Computer Physics Communications ••• (••••) •••–••• 9
Fig. 12. The condition wizard offers also a page with an alternative (OR) of 2D elementary conditions. In the RISING experiment this was useful for the CATE
detector, where the ion could hit only one of nine segments of the detector. As we see, in every row the elementary condition refers to a polygon gate called ‘center’.
However, there is no confusion, because the real, full name of each polygon also contains the string describing the name of the matrix where the polygon was
created.
chamber did not fire in this event). So, how should one treat
the row with such an elementary condition? The last example
showed us that the solution “treat it as false” was not good.
What to do? Treat it as “true”? No, it is obvious that if one of
the multiwire chambers did not deliver the data—the elemen-
tary condition with corresponding incrementer should not be
true. And the whole conjunction should be false as well.

As we see—sometimes we need one approach, sometimes
the other. This is why the first column in the table contains the
combo box, offering the choice.

What should we choose in a particular situation? The
answer: “nobody knows this better than the experimenter
himself”—is not realistic; especially in an experiment like
those from RISING, where we have many new people working
on each new experiment. So, to avoid confusion at this point
in the condition wizard, the ‘Cracow’ software helps in making
this choice. When the user is trying to use a variable (incre-
menter), which has a validator, a special wizard appears and
suggests to the user what option he should (most probably) use
for the incrementer in question.

11.3. Two-dimensional elementary condition on the “OR list”

The next page of the condition wizard deals with two-
dimensional elementary conditions. When do we need such a
condition? For instance, if the ‘Cracow’ GUI displays some
matrix on the screen, we may draw on this matrix a polygon
marking the interesting region. Such a polygon is not yet a con-
dition; it is just a polygon defined by a set of vertices. However,
we can use this polygon to create the elementary condition, just
by specifying the names of two variables (x and y) and the
name of the polygon.

The online analysis program during the analysis of every
event will take the current values of variables x and y and check
if the point P(x, y) lies inside the polygon. If yes, such an ele-
mentary condition is considered as true.

On the corresponding page in the condition wizard of ‘Cra-
cow’ GUI—we have a chance to define not just one 2D ele-
Please cite this article as: J. Grębosz, The Cracow code—an interactive method of s
doi:10.1016/j.cpc.2006.09.006
mentary condition, but the whole list of them, see Fig. 12. The
logical value of the whole page is evaluated as the alternative
(OR) of all the rows of this page.

In the first row of the table we can see the names of two vari-
ables, and then the name of the polygon. This example is taken
from the data analysis made during the Fast Beam Campaign,
where we were using the CATE detector [1]. The CATE de-
tector is a chessboard of nine telescope detectors. The ion can
hit one of these nine segments. If it does hit exactly one seg-
ment, we want to check if the values of dE and E registered by
the corresponding segment are in the “banana gate” polygon,
drawn on a related dE vs. E matrix.

This is why all nine elementary 2D conditions are on the list,
and the logical value of this page is evaluated as the alternative
(OR) of all elementary conditions (rows)

row1 ∨ row2 ∨ row3 ∨ · · · ∨ row9.

11.4. Two-dimensional elementary conditions on the “AND
list”

The next page of the condition wizard is very similar to
the previous one, but here all the listed elementary conditions
are creating the conjunction. This is the most frequently used
method of conditioning: we want some values on the X and Y

variables to occur inside one polygon gate, AND we also want
the current values of some other variables to occur inside an-
other polygon related to other X and Y variables.

Fig. 13 shows the example of using the two-dimensional el-
ementary conditions.

This page defines the condition, which is true when all the
rows of this table containing the elementary condition are true
(so: it is a conjunction of 2D elementary conditions)

(row1 ∧ row2 ∧ · · ·).
As it is a conjunction, here again arises the same problem

of what to do if one of variables does not contain a meaningful
value (because some detector did not fire and the calculation of
some value was impossible). Should the row of the conjunction
ophisticated online analysis, Computer Physics Communications (2006),



ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.10 (1-15)

10 J. Grębosz / Computer Physics Communications ••• (••••) •••–•••
Fig. 13. The page of the condition wizard, where we can create the conjunction of 2D elementary conditions. Here, for example, this conjunction was used for better
separation of the projectile coming from the fragment separator.
be in this case false or true? As there is no general answer—the
user can specify case by case in the first column of the table.

11.5. Condition of conditions

The previous pages of the condition wizard can account for
very sophisticated situations; with them the online analysis pro-
gram was successfully used for months. However, the users
demanded to have still another feature: the possibility to make
logical expressions of other conditions.

When is this useful? If the user has already prepared the
condition helping him to select the correct ion coming out of
the fragment separator—he can use it in a more precise form,
by cloning it and enriching it with additional elementary con-
ditions. This is the correct procedure but, due to cloning, the
same elementary conditions (“is a point lying inside the poly-
gon or not?”) will be evaluated twice for the same event, this is
not efficient.

So now there is another, more economic solution. The user
can say: “I want a new condition which is true when the other
condition is true, plus some extra condition. Here is this extra
condition. . . ”. During the definition of his new condition—the
user can also refer to the current values (true/false) of other
conditions. This is very convenient, but is not only a matter of
comfort or economy. The problem first arose when the users
wanted a veto detector. There was then a need to build the con-
dition which is false if some other condition is true.

From all these demands came the special page in the condi-
tion wizard, see Fig. 14.

On this page we can see four tables. In each of them the user
can place the names of other conditions. (To be user friendly the
user need only click and choose them from the list of already
existing conditions.) The four tables represent the common log-
ical operations. The first table is dedicated to the AND opera-
Please cite this article as: J. Grębosz, The Cracow code—an interactive method of
doi:10.1016/j.cpc.2006.09.006
tor, this means that the user requires all the conditions placed
here to be true (a conjunction of conditions). The OR table is
similarly available (an alternative of conditions). For negation
operations—tables with the operators NOR and NAND are pro-
vided.

We can see the four tables on this page of the wizard. We do
not have to use them all. If some of them are left empty, they are
considered to be non-existing. Those tables, which have some
content, should be true. The logical value of this whole page of
the wizard is a conjunction of these four tables.

11.6. Nesting of the conditions is done with care

The possibility of placing the names of other conditions is
very powerful, especially as these other conditions can also re-
fer to other existing conditions. So finally we can create a chain
of conditions. The length of such a chain is not limited.

However there is a risk that some condition may appear
twice in the chain, that would create an infinite loop of con-
ditions to check. For instance: condition A refers to condition
B, B refers to C, C refers to D, and D refers to B. By this, the
infinite circle B → C → D → B → ·· · is created. The analysis
program will start analysing the first event and will spend the
rest of its time jumping from condition to condition not know-
ing which of them should be evaluated first.

To avoid this error, during editing of the condition ‘Cracow’
GUI the wizard immediately checks to see whether the user has
tried to create such an infinite loop. If such a loop has been
created, the user is warned about the logical error.

There is no such risk if we create a brand-new condition—
it is new, so no other condition can be referring to it. But if
we are modifying a condition created earlier, some other condi-
tions can already be using the now modified one on their lists.
We may not remember (or know) this, so we could inadvertently
sophisticated online analysis, Computer Physics Communications (2006),



ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.11 (1-15)

J. Grębosz / Computer Physics Communications ••• (••••) •••–••• 11
Fig. 14. Using this page of the condition wizard, the user can create any kind of logical expression from the other previously defined conditions.
created an infinite loop in our conditions. Fortunately—this er-
ror will be immediately signalled by the wizard. The wizard is
even more careful here, as it checks not only the “direct” refer-
ences, but also the indirect ones. An indirect reference is when
we refer to a condition, which is at the beginning of a long chain
and also features somewhere further along the chain.

Note that for simplicity here we speak about the ‘chain’, but
as one condition can refer to many conditions at the same time
(for example, there can be many names of conditions placed
on the AND table—Fig. 14), so actually this system creates not
a ‘chain’, but a ‘tree’ of conditions. This is no problem, the
wizard is sophisticated enough to test all the branches of the
tree. The wizard knows that the same condition can be referred
to in different branches of the tree, but should never exist twice
in the same branch.

This (at first glance) complicated algorithm is, of course,
only a problem for the GUI programmer. The user does not
have to think about the tree-structure of the condition. He will
be only warned if he tries to create an invalid loop.

11.7. Veto conditions

As we have already mentioned, one of the reasons why the
users demand the option to create logical expressions of condi-
tions was for the experiments using veto detectors. The ability
to implement the negation operator was very important.

If there is only one such detector in the experiment, it is
not difficult for a beginner-user to prepare a veto-condition. At
first he creates the condition pretending that he wants to accept
events, when the veto detector not only fires, but also deliv-
ers the data in the forbidden range. Having done this, the user
creates a second condition, goes directly to the last page of its
wizard—condition of conditions—and here he puts the name of
the first condition in the table related to the NAND, or NOR ta-
ble. (If there is only one condition in the table, then it does not
Please cite this article as: J. Grębosz, The Cracow code—an interactive method of s
doi:10.1016/j.cpc.2006.09.006
matter whether it is the NAND or the NOR table.) This negation
is simple even for beginners.

With two veto detectors, some people have problems. This is
not related to the software. Simply: many people do not remem-
ber the rules of logic. Here is an example: the user has already
created two conditions specifying that his two veto detectors—
detA and detB—have fired and registered forbidden situation.
Now the user wants to create the condition which is true, when
veto detector A was “not protesting”, AND veto detector B was
“not protesting” as well. Shortly speaking the user wants such
a situation

(¬detA) ∧ (¬detB).

Unfortunately not everybody remembers De Morgan’s law:

(¬A) ∧ (¬B) ≡ ¬(A ∨ B).

This rule shows that the names of the two veto conditions
should be placed on the NOR list. This list is represented by the
table in the lower right corner, see Fig. 14.

Rules are rules, but we should understand that sometimes the
user is creating his condition during a night shift, and is very
tired. To be really user friendly, the wizard supplies the “hu-
man language” explanation on the top of the NOR table (“[true,]
when all of following [conditions] are false”).

11.8. Finishing the condition definition, and assigning it to
a spectrum

As we have seen, the condition wizard has several pages
where we can specify the lists of elementary conditions, which
will be tested (by the online analysis program) every event. Very
often users use only one of these pages to specify their wishes.
The empty (unused) page has a logical value—true. The final
logical value of the whole condition is a conjunction of all the
5 pages. This seems to come naturally for all users.
ophisticated online analysis, Computer Physics Communications (2006),



ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.12 (1-15)

12 J. Grębosz / Computer Physics Communications ••• (••••) •••–•••
When the user finishes the definition of the condition, the
condition wizard saves this definition on the disk. So far the
condition exists, but no spectrum uses it. Even if we apply this
condition to the currently running ‘spy’ (online analysis pro-
gram), ‘spy’ will not start testing this condition on the analysed
events. The ‘spy’ knows that no spectrum (or other condition)
waits for the result of such a test, so saves it time by not check-
ing it. To be tested, the condition has to be assigned to a spec-
trum, or has to be used by another condition.

Assigning a condition to any user-defined spectrum is sim-
ple. We return to the definition of a spectrum, we open it using
the spectrum wizard and on the wizard’s last page (Fig. 6), there
is a combo box with the list of all current existing conditions.
By selecting one of them, we assign the chosen condition to this
spectrum. From now on this is a conditional spectrum; it will be
incremented only if the assigned condition is true.

After closing the spectra wizard, the GUI checks if the on-
line analysis program (‘spy’) is currently running. If it is, the
GUI asks if it should send this new definition to the ‘spy’. If the
definition is sent, the ‘spy’ opens the definitions of the spec-
tra or conditions and then continues its normal work. The next
events analysed by the ‘spy’, will be tested by the new con-
dition and the new conditional spectrum incremented (or not).
Once more we should underline the fact that: introducing even
the most sophisticated conditional spectra can be done without
the need to recompile the spy program; even without stopping
it.

12. Self-gate

The user-defined spectra wizard and the user-defined condi-
tions wizard described above—are very powerful tools. They
give the experimenter the possibility to create any kind of spec-
trum which he needs. Unfortunately sometimes the cost is very
high. In this case the cost is amount of clicking needed to create
the desired conditional spectrum. If, for some chosen spectrum,
we need to create (for example) 105 conditions—the solution
is tedious and error prone; hence (from the logical point of
view)—purely correct.

Let’s take a good illustration from the everyday practice of
RISING experiments: the total (sum) spectrum of all the ener-
gies registered by the germanium crystals. As these energies are
gain-matched we can sum them and create the “total” spectrum.
If the user wants such a spectrum all he needs to do, is to define
it with a wizard. Using the wizard, on the page dedicated to the
X incrementers, he needs to put

– either 105 incrementers

cluster_crys_A_1_energy_cal
. . .

cluster_crys_R_7_energy_cal

– or—even faster—a collective-incrementer called:
ALL_cluster_crys_energy_cal.

After producing such a definition, the expected spectrum
will be created by the online analysis. Of course, this defini-
tion is nothing special; such a total spectrum is already among
Please cite this article as: J. Grębosz, The Cracow code—an interactive method of
doi:10.1016/j.cpc.2006.09.006
the standard spectra supplied by default by the online analy-
sis program (‘spy’). The experimenter usually wants something
more sophisticated; he wants this spectrum to be collected un-
der some condition.

Let us assume that the user needs a condition where the time-
of-flight value (measured by a set of scintillators) is in some
particular range (of picoseconds). No problem, all the user has
to do is to start the conditions wizard, which is an instrument
designated to create such a condition. On the second page of the
wizard, the user defines the 1D elementary condition—using
variable (incrementer) called: tof_21_41_tof_in_picoseconds_
when_ok. After creating such a condition and assigning it to
the spectrum, the work is done. The logic of this is clear—even
for a beginner.

Unfortunately some beginners tend to use the same logic in
cases of some special kinds of conditions. For example: the user
wants to collect the same total energy spectrum of gamma de-
tectors, under the condition that the times registered by the same
germanium detectors are in range, say, 4000–4020.

The user starts the condition manager and puts 105 incre-
menters related to the calibrated times of the germanium de-
tectors in the table 1D AND. (If the user is clever, instead of
105 incrementers, he will use one collective-incrementer called
“ALL_cluster_crys_time_cal” which gives the same effect.)

If the user assigns such a condition to his spectrum and starts
the analysis of data, he is surprised that the spectrum remains
almost empty. Seeing this, he checks the condition manager sta-
tistics list; here he can see that his condition is never true. No
wonder, it is almost never the case that all the detectors that fire
register the values of time in the same desired range. If one of
them is outside, the whole condition is false.

The user realises his error: “Perhaps it was nonsense to put
incrementers on the AND list?” The user opens the wizard to
modify the condition, and he moves his incrementers from the
page “1D AND” to the next page “1D OR”.

After this modification—the conditional spectrum starts to
grow quickly. It is incremented many times, but looking at this
spectrum, an experienced user can easily tell that the condition
does not work as it was expected. The spectrum is incremented
by such γ quanta, which—for sure—were registered with times
outside of desired region. So, what is wrong?

The shortest, but metaphoric answer would be: in the “logi-
cal expression” that the user creates by defining his conditional
spectrum he put the parenthesises in the wrong place. Due to
this error, if (in the particular event) we registered 22 γ quanta,
and only one of them had a time value lying in the desired
range, the condition will be true (because it is: OR). So the
spectrum will be incremented. Note: it will be incremented by
all of its incrementers; so by the one γ energy with “good time”,
and also by 21 “unwanted” γ energies, which were “out of the
time range” (i.e. a total of 22 incrementers). Fig. 15 shows the
scheme of such a defined conditional spectrum.

The correct way of producing such a conditional spectrum is
shown on Fig. 16.

As we see here, every energy incrementer should be used
to produce its own spectrum under its own, private condition
(a condition, which is set on the corresponding time incre-
sophisticated online analysis, Computer Physics Communications (2006),



ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.13 (1-15)

J. Grębosz / Computer Physics Communications ••• (••••) •••–••• 13
Fig. 15. A very common error, usually made by beginners during defining a conditional sum spectrum. It is not enough to create just one condition and depending
of its current logical value, increment the spectrum (or not). The proper solution is shown on the next figure.

Fig. 16. The correct way of creating the conditional sum spectrum. Unfortunately this requires creating 105 intermediary conditional spectra. To avoid this—there
is a better tool, called a self-gate.
menter). So, for example, we should make a definition of the
energy spectrum of detector k, under the condition that the
value of the time incrementer from detector k is true. We need
105 conditional spectra of this kind. Then, they all have to be
summed to produce one ‘total’ spectrum. The summing of the
spectra is not a problem; the ‘Cracow’ GUI provides this fea-
ture. The sum spectrum can be created easily and the sum in
made not only once, but it is updated every 30 seconds, so the
sum spectrum is automatically growing together with all the
spectra which contribute to its sum.

The real problem is that the user has to create 105 spectra
and 105 conditions. Even when taking advantage of the cloning
option—this is a lot of clicking. This is not a user friendly so-
lution; especially since during an experiment, such a spectrum
is needed to be observed as soon as possible.

To make this task easy, a special feature has been provided.
It is a small condition which we can assign to an individual in-
crementer placed in the spectrum definition. This specific type
of condition is called a “self-gate”, because it checks other
variables belonging to the same detector to which the original
incrementer belongs.

For example, if an incrementer represents the value of cali-
brated energy registered by the cluster crystal F4, we can assign
to this incrementer a self-gate, and this self-gate will allow us
to check if the calibrated time information in this same detector,
F4, is in the desired range. In this case we do not have to specify
that we mean the F4 detector. The self-gate looks at the incre-
menter to which it is assigned and recognises which detector is
in question.

If the self-gate condition in a particular event is true, the
“self-gated” incrementer is allowed to increment the spectrum.
If it is false, the incrementer is treated (in this event) as non-
existing.
Please cite this article as: J. Grębosz, The Cracow code—an interactive method of s
doi:10.1016/j.cpc.2006.09.006
The self gate has its own name, so we can apply the same
self-gate to many incrementers. The self-gate can check much
more than just the time value information. We can even use it
to set a gate on the scattering angle or on the constant Θ and
Φ angles—describing the geometric position of this detector
(Fig. 17).

The self-gate is a tool which saves us from creating many
conditions and many intermediate spectra, when we actually
need only one. This tool is useful in cases where:

– we have many detectors of the same kind,
– each of them offers several kinds of incrementer (energy,

time, scattering angle, angles of their position),
– one type of incrementer has to be summed to create a sum

(total) spectrum. . . ,
– . . . only if some other variable (in the same event) of the

same detector, fulfils some 1D condition.

In the case of the RISING experiments it was useful to sup-
port self-gates for:

– Germanium cluster detectors,
– Germanium detectors belonging to the Miniball array,
– BaF detectors belonging to the Hector array,
– the addback algorithm incrementers—used for all the

above types of detectors (not discussed in this paper).

As we have seen, the self-gate simplifies the creation of the
user-defined spectra. To prove its simplicity, let us look at an
example. We need the total energy spectrum of cluster detec-
tors under the condition that the corresponding times are in the
selected channel region 4000–4020. To define such a spectrum
we should:
ophisticated online analysis, Computer Physics Communications (2006),



ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.14 (1-15)

14 J. Grębosz / Computer Physics Communications ••• (••••) •••–•••
Fig. 17. A dialogue box for the definition of a self-gate used for cluster detectors (with VXI electronics). As we see, the self-gate can be set not only in the time, but
also on many other variables belonging to the same germanium crystal. Here—for illustrative purposes—we can see that is was also set on the angular position of
the detector.
Fig. 18. Thanks to the self-gate, just on one page of the spectrum wizard we can
create the conditional sum spectrum described earlier in Fig. 16.

– create the 1D user-defined spectrum, where there is one
collective-incrementer
ALL_cluster_crys_energy_cal_when_good,

– create a self-gate with the condition on the desired time
range,

– assign this self-gate to the incrementer.

All this can be done on one page of the spectrum wizard
(Fig. 18).

How does the online analysis program (‘spy’) proceed in the
case of such a spectrum definition? For every event it will try to
increment our spectrum. In the definition of this spectrum, the
‘spy’ sees one incrementer—the collective-incrementer (which
is actually the list of 105 incrementers). The analysis program
will take each of them and before using each, will go to the re-
Please cite this article as: J. Grębosz, The Cracow code—an interactive method of
doi:10.1016/j.cpc.2006.09.006
lated detector to validate the corresponding time (checking the
self-gate). Those incrementers, for whom their self-gate con-
dition is evaluated as true, will be allowed to increment the
spectrum.

To conclude this part, let’s underline once more: from the
logic the point of view, the self-gate is not necessary. All possi-
ble conditional spectra can be created by the spectra wizard and
the condition wizard without self-gates. However, the self-gate
allows making such definitions much simpler.

13. Online, near-line, offline analysis

The system described here makes the analysis swift enough
so that it is really online. The events are coming directly from
the data acquisition system in their raw form. Of course the
analysis could be faster if the events were not raw, but already
pre-sorted and stored on the disk in some optimised form (for
example, as a so-called ROOT tree [6]). But an experiment like
RISING—needs the analysis to be really online. This is espe-
cially true during the startup phase of the experiments, when
the experimenter keeps one hand on a potentiometer, changing
settings, while watching the expected immediate effect on the
online conditional spectrum.

The ‘Cracow’ GUI strictly collaborates with the online
analysis program ‘spy’ used in the RISING experiment. Here
we were discussing the ‘Cracow’ code, but it is worth saying,
that the ‘spy’ is based on the Go4 library [7]. Thanks to this, the
events for the analysis can be obtained either online (from the
DAQ system), or from the “event by event” (list mode) data file
stored by the DAQ on the disk a few minutes earlier. This mode
of work (a near-line analysis) has an advantage that 100% of
events are analysed (while in the online mode—only some frac-
sophisticated online analysis, Computer Physics Communications (2006),



ARTICLE IN PRESS COMPHY:3182
JID:COMPHY AID:3182 /FLA [m5+; v 1.67; Prn:24/10/2006; 11:38] P.15 (1-15)

J. Grębosz / Computer Physics Communications ••• (••••) •••–••• 15
tion, depending on a counting rate and complexity of the online
analysis algorithms).

No matter what mode (online, near-line) of analysis the user
chooses, he can use the same tools described in this paper for
defining his analysis. The users like this fact, they often ask to
install spy/Cracow code on their Linux laptops, because—after
experiments—when they return to their home laboratories they
would like to continue their analysis offline with the help of the
spy/Cracow code.

Some users even ask if it would be possible to implement the
Cracow code to analyse the data taken in different laboratories.
Yes, it would, but—as the ‘Cracow’ code is strictly collabo-
rating with the ‘spy’—their local program for offline analysis
(their local ‘spy’) should be modified, to:

– ‘publish’ its list of available incrementers (variables) spe-
cific to a particular experiment,

– implement the object oriented procedures responsible for
handling the user defined definitions created by ‘Cracow
code’ (spectra and conditions).

As most physicists nowadays understand that good analy-
sis software [8] should be written using the object-oriented
technique—the adaptation of such object-oriented software
should not be difficult.

14. Final impressions of the author

The system of interactive creation of the user-defined spec-
tra and user-defined conditions, was invented as a solution to
make the experimenters independent (of me), by giving them a
universal instrument to go through a long commissioning phase.
When this phase was over, we were still profiting from this tool,
so the system was constantly being improved. New users com-
Please cite this article as: J. Grębosz, The Cracow code—an interactive method of s
doi:10.1016/j.cpc.2006.09.006
ing for the new experiments are learning this tool surprisingly
quickly. Soon they forget that in their hand they have compli-
cated software—they are now talking only about the physics
seen on the screen. The physics, “extracted” by themselves—
from millions of numbers.

Acknowledgements

The ‘Cracow’ GUI project would probably never exist with-
out the enthusiastic experimenters and members of the RISING
project. Also special thanks go to Joern Adamczewski, who pa-
tiently explained to me the mysteries of GO4 and to Steven
Steer for fruitful discussions about this text.

I would like to express my gratitude to many unknown
friends, the creators of the KDevelop project [9].

This work has been partly supported by the Polish Ministry
of Education and Science (Grants Nr. 1 P03B 030 030 and 620/
E-77/SPB/GSI/P-03/DWM105/2004-2007).

References

[1] H.J. Wollersheim, et al., Rare ISotopes INvestigation at GSI (RISING) us-
ing gamma-ray spectroscopy at relativistic energies, Nucl. Instr. Methods in
Phys. Res. A 537 (2005) 637.

[2] J. Simpson, Z. Phys. A 358 (1997) 139; Achievements with the EURO-
BALL, in: W. Korten, S. Lunardi (Eds.), Scientific and Technical Report
1997–2003, 2003.

[3] H. Geissel, et al., Nucl. Instr. Methods B 70 (1992) 286.
[4] H. Essel, J. Hoffmann, N. Kurz, R.S. Mayer, W. Ott, D. Schall, IEEE Trans.

Nucl. Sci. NS-47 (2) (2000) 337.
[5] A. Maj, et al., Nucl. Phys. A 571 (1994) 185.
[6] http://root.cern.ch/.
[7] http://www-w2k.gsi.de/go4.
[8] B. Jacobsen, Applying object-oriented software engineering at the BaBar

collaboration, Nucl. Instr. Methods in Phys. Res. A 389 (1997) 1.
[9] http://www.kdevelop.org.
ophisticated online analysis, Computer Physics Communications (2006),

http://root.cern.ch/
http://www-w2k.gsi.de/go4
http://www.kdevelop.org

	The Cracow code-an interactive method of sophisticated online analysis
	Introduction
	Online analysis
	`Cracow' GUI
	Incrementer
	Some incrementers must be validated
	The user-defined spectra creator
	Two-dimensional spectra (matrices)
	All possible combinations of incrementers
	Incrementers from the same detector
	Incrementers from different detectors

	``ALL…'' collective-incrementers, a list of other incrementers
	Manager of the user-defined spectra
	User-defined conditions
	Condition wizard
	``OR list'' of the 1D elementary conditions 
	``AND list'' of 1D elementary conditions
	Two-dimensional elementary condition on the ``OR list''
	Two-dimensional elementary conditions on the ``AND list''
	Condition of conditions
	Nesting of the conditions is done with care
	Veto conditions
	Finishing the condition definition, and assigning it to a spectrum

	Self-gate
	Online, near-line, offline analysis
	Final impressions of the author
	Acknowledgements
	References


