β-decay studies near $N=28$

Zhihuan Li (RIKEN)
Contents

• Motivation
 - Shell evolution in N~28
 - Low lying states of 41Si and 40Si
 - Beta decay near N=28

• Experimental method
 - Beta decay
 - Life time measurement
 - Detector setup
 - Beam estimation

• Summary
Shell evolution in N~28

The experimental $E(2_{1+}^+)$ and $B(E2)$ values in Ca Si, S isotopic chains

- The orders of their single-particle orbits may shift
- Appearance/disappearance of magic numbers
- Formation of new regions of deformation.
- New neutron magic number 14 and 16 in O isotopes
- Break down of magic number N=20 in the island of inversion region
- Disappearance of the neutron shell closure at N=28 in 42Si.
The low lying levels of 41Si

The systematic of the energies of the $3/2^-$ states relative to $7/2^-$ ones in N=27 nuclei.

Deformation - strong configuration mixing of proton and neutron excitations

The proton excitations will be hindered.?

45Ar
deflection

43S

41Si

The strength of the mixing of the two components could be get from the lifetime of the $7/2^-$ state.
Low lying levels of 40Si

- The inelastic scattering and nucleon removal reaction on a liquid hydrogen target

- To reproduce the experimental result, the reduction of the n-n interaction at $Z=14$ is needed, but this reduction will cause the overestimating size of N=28 shell gap

- Low lying levels of 40Si and 41Si via the beta decay of 40Al and 41Al

- Beta decay of 40,41,42Si and 41,42,43P to test the shell model in wide range in near N=28 region
• The β-decay measurement for the nuclei near $N=28$ below 48Ca.

 - The parities of the ground-states of the parent and daughter are different. It will limit the possibility for direct feeding to the ground state.

 - The large Q-value window allows a large number of excited states to be populated.

 - Large P_n, β-delayed gamma and neutron measurements are needed.
The isomeric state produced in the fragmentation
The long-lived excited state populated in the β-decay

- **Time-delayed $\beta\gamma\gamma(t)$ measurement**

Plastic scintillator: Timing (start)
- Fast time response

LaBr$_3$: Timing (stop)
- Fast time response
- Poor energy resolution

HPGe: Branch selection
- High energy resolution
- Poor time response

$\tau > 30$ ps by fitting the slope of time spectrum

$\tau \sim 5$-10 ps by centroid shift of time spectrum relative to the prompt position

BigRIPS+ZeroDegree 48Ca beam at 350 AMeV with 200 pnA

- **PID**: event-by-event $B\rho-\Delta E$–TOF
- **β-ray**
 - plastic scintillator
- **β-delayed γ**
 - Clover Germanium detectors
 \[\varepsilon_\gamma > 5\% \text{ @ 1 MeV} \]
- **β-delayed neutron**
 - plastic scintillation bars
 \[\varepsilon_n \sim 5\% \text{ @ 1 MeV} \]
- **Lifetime by time-delayed $\beta\gamma\gamma(\tau)$**
 - two 1 inch \times 1 inch LaBr$_3$ counters
 \[\varepsilon_\gamma \sim 2.6\% \text{ @ 1 MeV} \]
The conditions of BigRIPS are optimized with minimal change of target and wedge configurations.
Summary

• **The goals of the experiment**
 Beta decay studies near N=28
 - low lying states of ^{41}Si, ^{40}Si
 - beta decay of $^{40,41}\text{Al}$, $^{40,41,42}\text{Si}$, $^{41,42,43}\text{P}$

• **Experimental method**
 - beta delayed gamma, neutron measurement
 - lifetimes for long-lived states by $\beta\gamma\gamma(t)$ measurement