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Abstract

We propose a new functional for the charge and mass identification in ∆E − E

telescopes. This functional is based on the Bethe formula, allowing safe interpolation
or extrapolation in regions with low statistics. When applied to telescopes involving
detectors delivering a linear response, as silicon detectors or ionization chambers,

a good mass and charge identification is achieved. For other detectors, as caesium-
iodide used as a final member of a telescope, a good accuracy is also obtained except

in the low residual energy region. A good identification is however recovered if a
non-linear energy dependence of the light output is included.

Key words: Radiation detectors, Scintillation detectors, Solid-state detectors,

Computer data analysis
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1 Introduction

Stacks of detectors, called telescopes, measuring the energy loss and residual
energy of charged particles have been used for a long time to get charge and
mass identification, and also energy, of such particles. Several combinations
of detectors have been used for this purpose : ionization chambers, silicon
detectors, plastic scintillators, thallium-activated caesium-iodide scintillators
(CsI(Tl)) read by photomultipliers or photodiodes. The identification is ob-
tained by plotting the energy loss in one or several components of the detector
stack versus the residual energy released in the detector in which the particle
has stopped. In such a plot events of a given charge and mass cluster around
identification lines. Two methods can then be implemented to extract the
identification for each event :
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• interactive drawing of lines on top of ridges corresponding to a given charge
or mass, or contours around events clustered around these ridges, any event
being identified from its distance to ridge lines or its inclusion in one contour,
• fit of the ridge lines with a functional in which Z and A enter as parameters,

the identification being obtained by inversion of the functional for given ∆E
and E in order to extract Z and A.

Whereas the first method is probably more powerful and allows to face any
situation, it suffers two main drawbacks : it doesn’t deliver any extrapolation
in regions of low statistics, and it is human-time consuming because each
identification line has to be accurately drawn. This last aspect becomes really
a concern when multidetectors are used, in which hundreds of such telescopes
are involved. The second method doesn’t suffer these inconveniences provided
that the functional accurately models the data. Identification functionals have
already been used in the past [1]. Due to their limited range of application,
some extensions have been added later [2]. The purpose of this work is to
propose a more complex functional based on physical grounds in order to
allow accurate modelling of the data and safe extrapolations in regions where
no data are present.

The second section is devoted to the derivation of a functional based on Bethe’s
formula with a power law velocity dependence, and to its main properties. The
third section proposes a phenomenological extension of this functional for data
departing from the simple restriction of Bethe’s formula. In the fourth section
we will show how the introduction of a non-linear term for the amplitude of
the light of a CsI(Tl) crystal allows a good charge identification up to Z = 50
for telescopes involving such detectors.

2 Basic functional

We assume that the stopping power of a fragment of energy E, mass A and
nuclear charge Z in a detecting medium takes the simple form :

dE
dX

=
Z2

f(E/A)
(1)

This formula can be straightly derived from Bethes’s formula [4] when the
charge state inside the stopping medium is strictly equal to the nuclear charge
Z. Its range of validity is restricted to light ions with energy sufficient to insure
that they are fully stripped. In particular the Bragg zone of the stopping power
curve, where the mean charge state is no more constant, is not addressed by
this formula.
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We also define the integral F of f as :

F (x) =

x∫

0

f(t) dt (2)

By integration of equation (1) one obtains the range-energy relation :

F (E/A) =
Z2

A
X (3)

This last relation can be applied to the case of telescopes made of a first
detector of thickness ∆X. The incoming fragment releases a part ∆E of its
energy in this detector, and its residual energy E in the rear detector for a
residual range X.

When applied to the total energy and to the residual energy, relation (3)
reads :





Z2

A
(X + ∆X) = F

(
E + ∆E

A

)

Z2

A
X = F

(
E

A

)

which, by elimination of X, delivers the E-∆E relation :

∆E = A

{
F−1

[
F (E/A) +

Z2

A
∆X

]
− E

A

}
(4)

This formula is rigorous as long as the stopping power takes the form (1).
However to reach a practical use we need to specify the function f . We will
choose a form close to Bethe’s behaviour but simpler in order to obtain and
analytical form of the integral inverse F−1.

2.1 Specialisation of the function f

In the case of Bethe’s formula in the non-relativistic domain, f(E/A) is al-
most proportional to E/A because the logarithmic term can be considered as
constant. Therefore we will choose a power law dependence :

f(E/A) = (E/A)µ (5)
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with µ ≈ 1. This particular form of f is advantageous because it leads to an
analytical form of (4) which reduces to :

∆E =
[
Eµ+1 + (µ+ 1)Z2Aµ ∆X

] 1
µ+1 − E (6)

One can notice that this relation is strictly equivalent to the functional used
in [1] because both are based on the same hypotheses.

2.2 Properties of the E-∆E relation

By taking the derivative of expression (6) versus E at E = 0 one gets the
slope at the starting point of the identification line which turns out to be
equal to -1 independently of Z and A. For signals delivered by real detectors
this slope includes the ratio of electronic gains. However, in case of detectors
exhibiting a linear response as silicon detectors, this constancy of the starting
slope is generally achieved. Conversely the verification of this property is a
good indication of the validity of approximations brought by (1).

By setting E = 0 in (6) one obtains the series of crossing points of identification
lines with the energy loss axis :

∆E0 = [(µ + 1) ∆X]
1

µ+1 Z
2

µ+1A
µ
µ+1 (7)

In particular for µ = 1, close to reality, these starting energy losses are pro-
portional to Z

√
A.

At high energy the second term between [. . .] in equation (6) becomes small,
compared to the first one, and an expansion to first order can be performed :

∆E∞ = ∆X
Z2

(E/A)µ
(8)

which is proportional to the stopping power, as expected.

2.3 Power law functional

If we assume that the detector response is linear, and that data comply to
relation (6), then they should be fitted by the following function :

∆E =
[
(gE)µ+1 +

(
λZ

2
µ+1A

µ
µ+1

)µ+1
] 1
µ+1 − gE (9)
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where the parameters are g (ratio of electronic gains), λ which includes the
thickness of the first detector and µ which is close to 1. Furthermore E and ∆E
are net signals from which pedestals have been subtracted. We then obtain a
3-parameter formula, or a 5-parameter formula if we also fit on the ∆E and
E pedestals.

To guarantee a convergence of the fit in all situations one should provide rea-
sonable starting values and impose constraints on the range of the parameters.
In particular µ should lie between 0.5 and 1.5 with a starting value µ0 = 1, the
initial value λ0 of λ should be determined from the starting point of an identi-
fication line, and g0 should be obtained from the slope at the same point. The
reader is referred to the appendix for technicalities related to the fit procedure.

Once parameters have been determined by the fitting procedure, the func-
tion (9) can be used to extract Z and eventually A associated to any ∆E−E
pair. This is achieved by an analytical inversion of equation (9) which deliv-
ers the quantity Z2Aµ as early observed [1]. If one is only interested in the
charge identification A is set dependent on Z, the simplest prescription being
A = 2Z, and equation (9) is solved for Z and the solution is projected onto the
nearest integer number Zi. Furthermore if the mass identification is required,
the value Zi is taken for Z and the equation is solved for A.

As an example figure 1 shows the ∆E − E map obtained with a calibration
module of INDRA, made of a silicon detector of thickness 70 µm and a lithium-
diffused silicon detector 2 mm thick, placed in front of a CsI(Tl) crystal used
as a veto removing all particles punched through the silicon-lithium detector.
The 8 dashed lines are the reference lines, from hydrogen to beryllium, used
as references for the 5-parameter fit. The result of the fit is shown on figure 2
which displays the particle identification PI = Zi+0.2(A−2Zi) versus the en-
ergy released in the silicon-lithium detector. In can be verified that distorsions
are very small and that the extrapolation toward boron an carbon elements
is correct, indicating that the power law formula models correctly the data in
this range.

However it has already been noticed in the past [2,3] that for a wider Z range,
the above formula must be extended. The stopping power may depart from
the behaviour ruled by relations (1) and (5), moreover the response of some
detectors is not completely linear : pulse height defect in silicon detectors, light
response of CsI(Tl) detectors. . . Figure 3 shows the ∆E − E map obtained
with a telescope made of 2 silicon detectors, of thicknesses equal to 150 µm
and 750 µm, in the case of a 208Pb beam at 29 MeV/n [8]. Thick dashed lines
drawn on top of ridges associated to Z = 8, 13, 17, 22, 28, 37 are used as a
reference for the 5-parameter fit with relation (9) which generates the thin
lines. It turns out that the functional hardly reproduces the data in the whole
range : not only its Z dependence is approximative, but also the shape of the
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Fig. 1. ∆E − E map from a silicon-silicon telescope. The 8 dashed lines, from

hydrogen to beryllium, are the reference lines used for the 5-parameter fit of equa-
tion (9), which in turn generates the thin continuous lines. For Z = 6, 7, 8, A = 2Z

is assumed.

energy dependence for a given line.

Therefore an enrichment of (9) is highly desired in order to benefit from more
degrees of freedom. The extension proposed hereafter is not based on theoret-
ical considerations but rather on phenomenological requirements.

3 Extended functional

One can see from equation (9) that µ rules the ordinates of starting points of
identification lines. Once µ has been fitted to reproduce these data, the rapidity

of the transition from the low energy domain dominated by λZ
2

µ+1A
µ
µ+1 to the

high energy region, proportional to the stopping power, is fixed. This could
lead to a too strong constraint when applied to real data. One could introduce
an additional parameter for the Z exponent but this would still link the Z
dependencies in the low and high energy regions. As regards the A exponent,
it can’t be touched because it insures the right asymptotic behaviour at high
energy, toward the stopping power.
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Fig. 2. Plot of the particle identification variable defined as PI = Zi+0.2(A−2Zi)

where Zi is the nearest integer deduced from the functional (9) setting A = 2Z, and
A is the mass which solves (9) when Z = Zi.

The ideal solution should meet the following prescriptions : independent vari-
ations in Z and A in the low and high energy regimes, possibility of tun-
ing separately the rapidity of the transition between these regimes, correct
asymptotic behaviour at high energy. This is achieved by the addition of new
phenomenomogical term.

We define the extended functional as :

∆E =
[
(gE)µ+ν+1 +

(
λZαAβ

)µ+ν+1
+ ξZ2Aµ(gE)ν

] 1
µ+ν+1 − gE (10)

which reduces to the basic functional (9) when one substitutes µ for µ+ν and
sets α = 2/(µ+ 1), β = µ/(µ+ 1) and ξ = 0, or even more simply if one sets :
ν = 0 and λ = 0.

The g parameter still represents the slope of identification lines at their start-
ing points (at E = 0), equal for all lines as for the power law formula. The
energy loss value at the starting points writes : ∆E0 = λZαAβ, showing that
this series of points essentially determines the λ, α and β parameters.

At higher energies an expansion of (10) to first order can be carried out,
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Fig. 3. ∆E − E map obtained with a 150 µm-750 µm silicon telescope for the
208Pb+natSi reaction at 29 MeV/n [8]. More populated areas are indicated by clearer
zones. Thick dashed lines drawn for Z = 8, 13, 17, 22, 28, 37 are used as a reference

for the 5-parameter fit with relation (9) which generates the thin lines.

leading to :

∆E∞ =
1

µ + ν + 1
× 1

(gE/A)µ
×
[
ξZ2 +

(λZα)µ+ν+1Aβ(µ+ν+1)−(µ+ν)

(gE/A)ν

]

One can notice that at high energy the dE/dX is recovered if µ stays in
the vicinity of 1, and that ξ governs the amount of energy loss in this region.
Moreover one benefits from the second term inside the square brackets which
allows, through the ν parameter, to change the shape of curves in the region
of intermediate energy.

The extended formula is a 7-parameter functional (λ, α, β, µ, ν, ξ and g) or
a 9-parameter one if both pedestals are also considered as parameters of the
fit. The convergency of the fit is always insured only if good starting values
are supplied and if constraints are applied to the range of parameters. More
precisely one should adopt : α0 = µ0 = 1, β0 = 0.5, ν0 = 1, λ0 determined
from the starting point of an identification line, g0 from its starting slope,
and ξ0 from one point taken at high energy. The ranges should be restricted
to : 0.5 < α < 1.5, 0.2 < β < 1, 0.2 < µ < 1.5, 0.1 < ν < 4,
λ0/4 < λ < 4λ0, g0/4 < g < 4g0, 0 < ξ. In the case where no mass
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Fig. 4. Same as figure 3 but thin lines result now from the fit based on the 8-pa-
rameter extended functional (10), assuming A = 2Z.

identification is given, the number of parameters is decremented by one : β is
kept equal to 0.5 and A is taken as a function of Z, the simplest relationship
being A = 2Z.

Unlike the power law formula, the extended formula can’t be analytically
inverted to extract Z and A from a ∆E − E pair. This can only be done nu-
merically and the fastest algorithm is probably the Newton-Raphson method
which however needs the derivatives of (10) with respect to Z and A.

The quality of a fit based on this extended formula with 8 parameters, as-
suming A = 2Z and β arbitrarily set, is shown on figure 4 where it appears
that the shape of the curves is nicely reproduced, and also the interpolation
in regions where no reference line guides the fit procedure. Even the extrapo-
lation toward higher Z’s is satisfactory, having in mind that in this region the
simple hypothesis A = 2Z is unlikely to hold. Figure 5 shows that only small
distorsions remain when the identified Z for each event is plotted versus the
residual energy.

We can also check the ability of this functional to reproduce the data for
telescopes using a CsI(Tl) crystal as a stopping detector, for which the light
response is not linear with the deposited energy and depends on the nature of
the particle. For this purpose we worked on the data collected by a module of

9



Fig. 5. For the same data as in figures 3 and 4, the Z extracted from relation (10)
is plotted versus the residual energy to exhibit possible distorsions.

Fig. 6. ∆E − h plot for a silicon-CsI(Tl) telescope, the abscissa is the total light
output reconstructed from the fast and slow components of the CsI(Tl). The thick

dashed lines follow the ridges of charges Z = 4, 6, 12, 22, 30, 40 and the thin lines
result from the 8-parameter fit based on the extended functional (10) with A = 2Z.

The right part is a zoom applied to the low light region of the left map, including the
line Z = 30. The non-linearity of the light response shows up by the high curvature

of data, not predicted by the functional.
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the second ring of the multidetector INDRA, made of a 300 µm silicon planar
detector followed by a CsI(Tl) of depth equal to 14 cm [9]. As the CsI(Tl)
signal was only partially integrated on 2 time intervals for the delivering of
the so-called slow and fast components, we didn’t have at disposal a true
measurement of the total light signal, integrated over the duration of the
pulse. We reconstructed this total light signal h by a combination of slow
and fast components following a procedure described in [7]. Figure 6 is an
illustration of a ∆E−h plot collected with a tin beam. The thick dashed lines
are drawn on top of charges Z = 4, 6, 12, 22, 30, 40 and the thin lines result
from the 8-parameter fit with A = 2Z. Despite the non-linearity of the light
response and its dependence with Z the fit is in good agreement with the data,
showing that the parameters of the functional are able to partially compensate
for these effects. However by looking carefully at the low residual energy region,
as displayed in the right part of figure 6, one can see that the curvature of
data is much more pronounced than predicted by the functional. This effect is
due to the highly non-linear light response which is almost quadratic in this
region. Any improvemevent of the accuracy of generated identification lines in
this region needs an explicit inclusion of such a non-linearity.

4 Light response of caesium-iodide crystal

The idea for a new extension of functionals (9) and (10) is to substitute for
E its evaluation from the light output, in order to derive direct dependencies
of the energy loss with the light output, the most part of non-linearities being
carried by the relationship between light and energy.

We will take for the light response of CsI(Tl) crystals a dependence deduced
from the Birks formula [5]. If one denotes h the net light output after sub-
traction of the pedestal, its dependence with the energy deposition takes the
form [6] :

h = E − ρ ln

(
1 +

E

ρ

)
where ρ = ηZ2A (11)

and η is a new parameter. No multiplicative constant is needed because the
scaling factor is already included in the g parameter of the functional, this
is equivalent to consider the energy and the light output as measured with
the same unit. This formula is not the most accurate [7] and particularly it
discards the loss of quenching due to the delta electrons. We take it merely
as a reasonable way of accounting for the non-linearities at low energy and
high Z, hoping that the other parameters of the functional will be able to
compensate its partial inadequacy.
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However one difficulty arises from the fact that equation (11) cannot be ana-
lytically inverted to express E as a function of h, as required for its insertion
into the functionals (9) or (10). This is the reason why we adopted a slightly
different formula for the inverse relation, imposing the same asymptotic be-
haviours at low and high energy. From (11) we derive for the low and high
energy regimes :

E −→ 0 =⇒ h −→ E2

2ρ

E −→∞ =⇒ h −→ E − ρ ln

(
E

ρ

)

which exhibits the quadratic dependence at low energy. By inverting these
relations one gets :

h −→ 0 =⇒ E −→
√

2ρh

h −→∞ =⇒ E −→ h + ρ ln

(
h

ρ

)

Now we seek for a formula which complies with the above limiting behaviours,
and we can check that :

E =

√√√√h2 + 2ρh

[
1 + ln

(
1 +

h

ρ

)]
(12)

fulfills this condition. Obviously relation (12) is not the strict inverse of (11),
but it departs from it by 7.4 % only at maximum, and both become identical
at low and high energy.

If we use this relation in combination with (10), we obtain now a functional
with 8 parameters (λ, α, β, µ, ν, ξ, g and η), and 2 eventually additional
parameters if pedestals in h and ∆E are also adjusted.

Figure 7 displays the calculated lines resulting from a 9-parameter fit in which
β has been kept constant as the charge identification only is given, and A = 2Z
is assumed. It can be seen that a satisfactory agreement is obtained for the
shape of the curves. Particularly one can notice that the high curvature of
the lines in the vicinity of the energy loss axis is well reproduced by the
introduction of the light response and its quadratic dependence at low energy.
Furthermore a stable extrapolation is deduced for the charges higher than 40,
the highest line used as a reference for the fit.

The quality of the charge identification can be checked on figure 8 where the
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Fig. 7. Same as figure 6 but the thin lines result now from a 9-parameter fit
combining relations (10) and (12). The curvature of data at low energy is now
reproduced.

Fig. 8. For the same data as in figures 6 and 7, the Z extracted from relations (10)
and (12) is plotted versus the residual energy to exhibit possible distorsions.

distorsions of the identified Z versus the light output appear to be small even
for a wide range of charges. The apparent loss of resolution at low Z’s simply
reflects the coding granularity, the channel size in energy loss becoming too
large for these low charges.
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5 Conclusion

Starting from the usual power law formula we propose an extended functional
for the particle identification in ∆E − E telescopes, allowing a good mass
and charge identification with silicon detectors on a wide range in energy
and charge. Its domain of applicability remains however limited to situations
where the Bragg region plays a minor role, in particular this excludes high
Z’s detected in thin ∆E detectors. This functional can also be applied to spe-
cific cases where the E signal is no longer linear with the energy deposition,
as for example for silicon-CsI(Tl) telescopes in which the fast component of
the CsI(Tl) is taken as a measure of the residual energy. This procedure has
been applied to the calibrating modules in the INDRA multidetector, how-
ever it appears to be accurate only on a range of a few charges. By using the
total light output of CsI(Tl), either by integrating the whole light signal or
by estimating it from the partial integrations associated to the slow and fast
components, the agreement between data and the extended formula is highly
improved on a large range of Z. Moreover the discrepancies which remain at
low residual energy are removed by the explicit introduction of the non-linear
light response of the CsI(Tl) crystal, and a good quality of the identification
is obtained on a wide range in charge and energy. This new functional opens
the possibility of identifying particles in silicon or silicon-CsI(Tl) telescopes by
defining only a limited number of reference points, and allows to rely on the
deduced interpolation and even on the extrapolation in low statistics regions.
It should make easier the usual identification task of particle identification in
the case of charged particle multidetectors. The author expresses his aknowl-
edgement to M. Morjean and to the INDRA collaboration, for having provided
their data before publication.

A Appendix

The fit algorithm relies on the local quadratic expansion of the χ2. At each
step a calculation is made for χ2, its gradient, and an estimation of the hessian
matrix obtained by neglecting the second derivatives of the functional. This
approximation is powerful because it always delivers a definite positive matrix
which, in the vicinity of the minimum, becomes very close to the true hessian
matrix. With such a prescription it is necessary to compute only the func-
tional value and its gradient at each data point. The minimization proceeds
iteratively and at each step the status of constraints is checked.

In order to insure a correct convergency 2 conditions have to be met :

• good starting values of the parameters have to be supplied as already ex-
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plained,
• for the minimization procedure the parameters have to be scaled in order

to be of the order of unity.

For a practical use, the formulas giving the derivatives of the functional (10)
against parameters are written hereafter. By denoting :

G =
[
(gE)µ+ν+1 +

(
λZαAβ

)µ+ν+1
+ ξ Z2Aµ(gE)ν

]

the derivatives can be expressed as :

∂∆E

∂λ
=G

1
µ+ν+1

−1
(
λZαAβ

)µ+ν+1 1

λ
∂∆E

∂α
=G

1
µ+ν+1

−1
(
λZαAβ

)µ+ν+1
ln (Z)

∂∆E

∂β
=G

1
µ+ν+1

−1
(
λZαAβ

)µ+ν+1
ln (A)

∂∆E

∂g
=

{
G

1
µ+ν+1

−1 1

gE

[
(gE)µ+ν+1 +

ν

µ+ ν + 1
ξ Z2Aµ(gE)ν

]
− 1

}
E

∂∆E

∂E
=

{
G

1
µ+ν+1

−1 1

gE

[
(gE)µ+ν+1 +

ν

µ+ ν + 1
ξ Z2Aµ(gE)ν

]
− 1

}
g

∂∆E

∂µ
=
G

1
µ+ν+1

−1

µ + ν + 1

{
(gE)µ+ν+1 ln (gE) +

(
λZαAβ

)µ+ν+1
ln
(
λZαAβ

)
+

ξ Z2Aµ(gE)ν ln (A)− G ln (G)

µ+ ν + 1

}

∂∆E

∂ν
=
G

1
µ+ν+1

−1

µ + ν + 1

{
(gE)µ+ν+1 ln (gE) +

(
λZαAβ

)µ+ν+1
ln
(
λZαAβ

)
+

ξ Z2Aµ(gE)ν ln (gE)− G ln (G)

µ + ν + 1

}

∂∆E

∂ξ
=
G

1
µ+ν+1

−1

µ + ν + 1
Z2Aµ(gE)ν

∂∆E

∂Z
=G

1
µ+ν+1

−1




α
(
λZαAβ

)µ+ν+1
+ 2

µ+ν+1
ξ Z2Aµ(gE)ν

Z





∂∆E

∂A
=G

1
µ+ν+1

−1





β
(
λZαAβ

)µ+ν+1
+ µ

µ+ν+1
ξ Z2Aµ(gE)ν

A





The derivative ∂∆E/∂E is involved in the E-pedestal dependence. It is also
useful when E is expressed from the light output using (12). The ∂∆E/∂Z
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and ∂∆E/∂A derivatives are ingredients of the Newton-Raphson method for
the determination of Z and A for a given ∆E−E pair whence the parameters
have been determined.

Regarding the light response (12), the useful derivatives are :

∂E

∂h
=
h

E

{
1 +

1

1 + h/ρ
+

1 + ln (1 + h/ρ)

h/ρ

}

∂E

∂ρ
=
h

E

{
1

1 + h/ρ
+ ln (1 + h/ρ)

}
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