next up previous
Next: About this document

Experimental set-up


double ionization chamber

  figure14
Figure 1: Inner setup of the double ionization chamber. The thin tex2html_wrap_inline172 source was mounted in the hole in the center of the cathode.

anodes tex2html_wrap_inline174 energies of fission fragments


momentum conservation:

displaymath20

displaymath22

displaymath24

tex2html_wrap_inline176 Cf-source:

table29

  figure34
Figure 2: Energy of anode-1 versus energy of anode-2 measured with the double ionization chamber.

  figure40
Figure 3: Energy versus mass number (top), fragment mass distribution (bottom).

Emission Angle of Fragments


drift-time of anode tex2html_wrap_inline174 polar angle tex2html_wrap_inline192


drift-time mesurement: start with central cathode signal, stop with anode signal

  figure48
Figure 4: Determination of the polar angle tex2html_wrap_inline192 from the measured drift-time.

displaymath54

displaymath57

displaymath62

displaymath64

polar angle of fragments:

displaymath66

  figure70
Figure 5: tex2html_wrap_inline198 versus tex2html_wrap_inline200 distribution determined with the double ionization chamber.

Emission Angle of Fragments


energy signal of cathode sections tex2html_wrap_inline174 azimuthal angle tex2html_wrap_inline204


energy signals of the four sectors depend on the orientaion of the fission axis

  figure78
Figure 6: Determination of the azimuthal angle tex2html_wrap_inline204 from the cathode signals.

determination of energy ratios

displaymath84

displaymath90

azimuthal angle of fragments:

displaymath96

Energy Ratios for Different Emission Angles tex2html_wrap_inline192


  figure103
Figure 7: Energy ratios tex2html_wrap_inline210 versus tex2html_wrap_inline212 determined from the cathode signals for emission angles tex2html_wrap_inline214 .





Hans-Juergen Wollersheim
Tue Nov 14 16:10:57 CET 2000