

Coulomb excitation experiment ⁵⁸Ni on ¹¹²Sn at 175MeV

24.9.2008

Contents:

- 1. Kinematics
- 2. Experimental setup and tasks
- 3. Electronics
- 4. On-line analysis
 - 4.1 Doppler-shift correction
- 5. Coulomb excitation
 - 5.1 'Safe' bombarding energy
 - 5.2 Coulomb excitation cross section

Appendix A: Doppler shift correction

Appendix B: Analysis of target material

Appendix C: Nuclear structure data

Appendix D: Input data for Coulomb excitation program

- Appendix E: Input data for angular distribution program
- Appendix F: Important formulas
- Appendix G: Transformation of a polar coordinate system from target position to a flat (Ge) detector

1. Kinematics

Calculations are performed with FORTRAN program: *kinemat.f* (*www-linux.gsi.de*/~*wolle/INDIA*)

⁵⁸Ni projectile (A₁=A₃=58) on ¹¹²Sn target nucleus (A₂=A₄=112) at E_{lab} =175MeV

Fig. 1 shows the energy dependence of both reaction parameters on the scattering angle in the cm- and lab-frame.

The aim of the experiment is to measure either the projectile or the recoil nucleus in the annular PPAC (see fig.2). The PPAC can detect particles between 15° and 45° . However, it can happen that particles at large scattering angles (at around $\sim 45^{\circ}$) are suppressed by the PPAC threshold because of their low energy. Therefore, it is doubtful, if the PPAC boundaries can be used for the calibration of the delay-line spectrum (see on-line analysis). An additional calibration point of the delay-line spectrum, which is proportional to $\tan(\vartheta)$, can be obtained from the scattering of the ⁵⁸Ni beam on an aluminium target. We will use the maximum kinematical angle (arc $\sin(27/58)=27.74^{\circ}$) for the calibration. I will carry a thin aluminium target ($35\mu g/cm^2$ and $90\mu g/cm^2$) with me.

Fig.2 shows the experimental setup with the annular parallel plate avalanche counter (PPAC) and two Ge-detectors at backward angles.

The optimal setup will include four Clover Ge-detectors at backward angles (153°) . The azimuthal angles are 25° , 155° , 335° and 205° . The front face radius of the Clover detector is r=3.25(6)cm. The intrinsic photopeak efficiency for the Clover detector is ϵ =0.20. The increase of the intrinsic photopeak efficiency from ϵ =0.13, the value for the individual Clover diodes, corresponds to the add-back factor.

Fig.3 shows the present GDA experimental setup. <u>Tasks:</u>

Things to do for Coulomb Excitation experiment in GDA (Murali, 18-8-2008)

Check Vacuum in GDA beam line after mounting the Vent valve

Check the 200 lt dewar by LN2 filling from Main line while INGA / BH II 1000 lt periodic filling (alternate day)

Resurrect GDA LN2 auto fill system

Label existing GDA cable detector to Patch panel (PP), PP to electronics (inside GDA cabin)

Check inventory of modules & working condition

Mount plates with nylon / plastic screws

Mount ACS plates with 4 rods for clover to be mounted with it's own plate

Mobilize HVPS, PA-PS for clovers with necessary cables

Source testing with clover in GDA & CANDLE

convert CANDLE to Root for analyzing with GO4 / ROOT cables / modules required (list given below)

Cable: 4 (Crystal) x 4 (Clover) x 2 (Energy / Time) = 32 signals to process in Electronics cabin also Detectors to Patch Panel Beam-line Patch Panel to Clover modules Clover modules to ADC, CO4010, GG8000, Mastergate

HV, Bias shutdown cables 4 each SHV to SHV (old & new are different) & BNC to SBC / SMA

Preamplifier power cables

Electronics: Bitpattern module testing CF8000 Clover modules GG8000 CO4010 4 8K quad ADC or equivalent HVPS 5 KV, Preamplifier Power supply, preamplifier

- 1. The scattering chamber has to be mounted, aligned and vacuum tested.
- 2. The PPAC has to be attached downstream of the target (see fig.2) in order to measure scattering angles between 15° and 45° .
- 3. The PPAC has to be tested with an alpha source (e.g. 241 Am).
- 4. 4 special plates for the INGA clovers have to be mounted.
- 5. 4 INGA clover detectors have to be positioned at backward angles ($\sim 150^{\circ}$) and if possible at forward angles ($\sim 30^{\circ}$).
- 6. All detectors have to be cabled.

3. Electronics

Fig. 4 shows the electronic block diagram of the particle- γ coincidence measurement.

We need the following electronic modules:

PPAC:

- 1. pre-amplifier (8-fold)
 - 3 modules for segmented anode (GSI)

1 module for delay-line cathode (GSI)

- 2. CFD-8000
 3 modules for segmented anode (GSI, fraction: 0.2, internal delay: 6ns)
 1 module for delay-line cathode (GSI, fraction: 0.4, internal delay:18ns)
- 3. GG-8000 3 modules f
 - 3 modules for segmented anode (GSI?)
- 4. 1 OR unit
- 5. DL-8000 1 module for delay-line cathode

INGA clover:

- 1. clover module
 - 4 modules
- 2. 1 OR unit
- 3. 1 SH 8000

trigger:

- 1. 1 coincidence unit
- 2. 1 GG-8000 unit

ADC-TDC-BITPattern:

- 1. 1 16-channel ADC (Ge-detector)
- 2. 3 16-channel TDC (PPAC, Ge-detector)
- 3. 2 16-channel bit-pattern unit (if available)

4. On-line analysis

For controlling the experiment we need **raw spectra** for all parameters.

16 energy spectra (Ge-crystals)

4 time spectra (Ge-crystals)

4 time spectra (PPAC: left-inner, left-outer, right-inner, right-outer) range 4K 16-20 time spectra (PPAC: segmented anode).

Fig. 5 shows delay-line spectra (delay right inner readout: t_{DRI} - t_R and delay right outer readout: t_{DRO} - t_R) for ²⁰⁶Pb on ²³²Th at 6.4MeV/u (CFD: fraction=0.4, delay=18ns).

2 difference spectra (PPAC delay line):

left-inner – left-outer (range 8K) right-inner – right outer (range 8K)

Fig. 6 shows difference spectrum (delay right inner readout - delay right outer readout: $[t_{DRI}-t_R] - [t_{DRO}-t_R]$) for ²⁰⁶Pb on ²³²Th at 6.4MeV/u (CFD: fraction=0.4, delay=18ns).

Some **spectra** have to be **calibrated**:

16 energy spectra in keV (Ge-crystals) or 4 energy spectra in keV (INGA clover) to save computer storage

2 difference spectra (PPAC delay line) $\tan \vartheta = \frac{\tan 45^\circ - \tan 15^\circ}{ch_2 - ch_1} \cdot (ch - ch_1) + \tan 15^\circ$

We need look-up tables for the segmented anodes and the INGA clover positions:

segment	IUAC	GSI
p1	22.5°	18^{0}
p2	45.0^{0}	36 ⁰
p16	360^{0}	288^{0}
p20		360°

clover-1	30^{0}	0^0
clover-2	30^{0}	180^{0}
clover-3	150^{0}	0^0
clover-4	150^{0}	180^{0}

All angles should be stored in radian ($radian = \frac{\mathcal{G}(\deg ree) \cdot \pi}{180^{\circ}}$).

4.1 Doppler-shift correction

We have to perform 4 different Doppler shift corrections (see appendix A), since we cannot identify the projectile $(15^{\circ} \le \theta_3 \le 45^{\circ}, 22.7^{\circ} \le \theta_{cm} \le 66.5^{\circ})$ or recoil nucleus $(15^{\circ} \le \theta_4 \le 45^{\circ}, 150^{\circ} \ge \theta_{cm} \ge 90^{\circ})$ with the PPAC. We also don't know if the projectile or recoil nucleus is excited.

The scattering angle is measured using the delay-line information (inner-outer difference)

$$\tan \theta = \frac{\tan 45^{\circ} - \tan 15^{\circ}}{ch_2 - ch_1} \cdot (ch - ch_1) + \tan 15^{\circ}$$

From the PPAC anode segment we get the azimuthal angle φ (look-up table). The γ -ray direction is determined from the Ge-position $\mathcal{G}_{\gamma}, \varphi_{\gamma}$ (look-up table).

64 Doppler corrected energy spectra in keV (Ge-crystals)

or

16 Doppler corrected energy spectra in keV (INGA clover) to save computer storage

Fig.7 shows the Doppler shifted γ -ray energies for the ¹¹²Sn excitation (2⁺ energy: 1.257MeV) and ⁵⁸Ni excitation (2⁺ energy: 1.454MeV) as a function of the laboratory scattering angle $\vartheta_{\ell ab}$. The γ -rays are measured at forward angles ($\vartheta_{\gamma} = 30^{\circ}$, $\varphi_{\gamma} = 0^{\circ}$, see left figure) and backward angles ($\vartheta_{\gamma} = 150^{\circ}$, $\varphi_{\gamma} = 0^{\circ}$, see right figure). The blue lines represent the results for distant collisions ($22.7^{\circ} \le \theta_{cm} \le 66.5^{\circ}$, projectile detected), while the red lines are for close collisions ($150^{\circ} \ge \theta_{cm} \ge 90^{\circ}$, target nucleus detected). The

solid, dashed, dashed-dotted and dotted lines were calculated for azimuthal angles of $\varphi=0^{0}$, 90⁰, 180⁰ and 270⁰, respectively. As expected, the dashed lines and the dotted lines coincide for the present calculations.

Calculations are performed with FORTRAN program: *doppler.f* (*www-linux.gsi.de*/~*wolle/INDIA*)

In the raw spectra the target excitation and the projectile excitation are clearly separated. After the Doppler shift correction the calculated γ -ray energy in the rest-frame should coincide with the green lines. The wrong corrected events contribute to the γ -ray background.

5. Coulomb excitation 5.1 'Safe' bombarding energy

The most straightforward way to the understanding of scattering of two heavy nuclei is obtained in the semiclassical approach. For large values of the Sommerfeld parameter η and large values of the wave number k_{∞} the motion of the centers of the colliding nuclei can be described by classical orbits. Both parameters are defined by

Sommerfeld parameter:
$$\eta = 0.15746 \cdot Z_1 \cdot Z_2 \cdot \sqrt{\frac{A_1}{E_{\ell ab}}}$$
 with $E_{\ell ab}[MeV]$ and $A_i[amu]$
wave number: $k_{\infty} = 0.21872 \cdot \frac{A_1 \cdot A_2}{A_1 + A_2} \cdot \sqrt{\frac{E_{\ell ab}}{A_1}}$ with $E_{\ell ab}[MeV]$ and $A_i[amu]$

In our heavy ion reaction ⁵⁸Ni on ¹¹²Sn at 175MeV both conditions (η =127 and k_{∞} =14.5fm⁻¹) for a classical trajectory are fulfilled.

The experimental data can be displayed in dependence of the impact parameter, the angular momentum, the distance of closest approach and the scattering angle. In the distance of closest approach presentation, effects due to the nuclear interaction become nearly independent of dynamical quantities such as the bombarding energy. From these data one can obtain an estimate for the smallest distance of closest approach D_s for which the interaction between the two nuclei can be assumed to be purely electromagnetic. This distance can be used to calculate the maximum 'safe' bombarding energy, via the

following formula
$$D = \frac{\eta}{k_{\infty}} \cdot \left[\sin^{-1} \left(\frac{\theta_{cm}}{2} \right) + 1 \right] = 0.72 \cdot \frac{Z_1 \cdot Z_2}{E_{\ell ab}} \cdot \frac{A_1 + A_2}{A_2} \cdot \left[\sin^{-1} \left(\frac{\theta_{cm}}{2} \right) + 1 \right].$$

Based on many experiments the smallest distance of closest approach D_s is well described by

$$D_s = C_1 + C_2 + 5 fm$$

A minimum distance between the two nuclear surfaces of at least 5fm is needed to assure pure electromagnetic interaction. The matter half-density radii C_i have been calculated in the droplet model (W.D. Myers, Nucl.Phys.A204 (1973),465) by

$$C_i = R_i \cdot \left[1 - \left(1 / R_i \right)^2 \right]$$

with

$$R_i = 1.28 \cdot A_i^{1/3} - 0.76 + 0.8 \cdot A_i^{-1/3}$$

For ⁵⁸Ni (R₁=4.40fm, C₁=4.17fm) on ¹¹²Sn (R₂=5.58fm, C₂=5.40fm) experiment the smallest distance of closest approach is $D_s=14.57$ fm, from which a maximum 'safe' bombarding energy of 210MeV can be calculated.

5.1 Coulomb excitation cross section

Coulomb excitation calculations are performed with FORTRAN program: *lell30e1.f* <u>input-file:</u> input, <u>output-file:</u> output and anggro. Cross sections are integrated with FORTRAN program: *anggro.f* <u>input-file:</u> input and coulex(=anggro see above), <u>output-file:</u> output (www-linux.gsi.de/~wolle/INDIA)

In a first step the Coulomb excitation cross section (lell30e1.f) is calculated. Then we can distinguish 3 cases for the particle- γ angular correlation (anggro.f): (i) calculation in the rest-frame (I24=1, Q₀=1, Q₂=0, Q₄=0), (ii) calculation in the laboratory frame (only Lorentz-boost: I24=0, Q₀=1, Q₂=0, Q₄=0), (iii) calculation in the laboratory frame with γ -ray angular correlation (I24=0, Q₀=Q₂=Q₄=1). The results from anggro.f have to be multiplied by 4π to obtain the cross sections in [barn].

$\theta_{\gamma} \phi_{\gamma}$	θ_{cm}		¹¹² Sn : σ_2 [mb]	⁵⁸ Ni: σ ₂ [mb]	ratio
, . ,			$^{58}Ni \rightarrow ^{112}Sn$	$^{58}Ni \rightarrow ^{112}Sn$	¹¹² Sn/ ⁵⁸ Ni
			175MeV	175MeV	
30 [°] ,0 [°]	$22.7^{\circ}-66.5^{\circ}$	(i)	74.85	37.96	1.972
		(ii)	76.18	42.04	1.812
		(iii)	83.93	46.97	1.787
	$150^{0}-90^{0}$	(i)	82.98	48.22	1.721
		(ii)	88.56	48.78	1.816
		(iii)	109.66	61.61	1.780
$150^{\circ}, 0^{\circ}$	22.7° -66.5°	(i)	74.85	37.26	1.972
		(ii)	73.51	34.16	2.152
		(iii)	81.71	38.37	2.130
	$150^{0}-90^{0}$	(i)	82.98	48.22	1.721
		(ii)	77.65	47.55	1.633
		(iii)	97.74	59.00	1.657

How to determine the B(E2)-value:

$$B(E2;0^{+} \to 2^{+})[^{112}Sn] = B(E2;0^{+} \to 2^{+})[^{116}Sn] \cdot \frac{I_{\gamma}[^{112}Sn]}{I_{\gamma}[^{116}Sn]} / \frac{I_{\gamma}[^{58}Ni]}{I_{\gamma}[^{58}Ni]}$$

Proof of the equation:

$\theta_{\gamma}\phi_{\gamma}$	θ_{cm}		¹¹² Sn: σ_2 [mb]	¹¹² Sn: σ_2 [mb]	ratio
			175 MeV	175 MeV	
			<2//M(E2)//0>=0.490eb	<2//M(E2)//0>=0.539eb	
$150^{0},0^{0}$	$22.7^{\circ}-66.5^{\circ}$	(iii)	81.71	98.63	1.207

	$150^{\circ}-90^{\circ}$	(iii)	97.74	97.74 116.19		89
$\theta_{\gamma} \phi_{\gamma}$	θ_{cm}		¹¹⁶ Sn: σ_2 [mb]	⁵⁸ Ni: σ ₂ [mb]	ratio	double
, , ,			$^{58}Ni \rightarrow ^{116}Sn$	$^{58}Ni \rightarrow ^{116}Sn$	¹¹⁶ Sn/ ⁵⁸ Ni	ratio $^{112}Sn/^{116}Sn$
			175MeV	175MeV		511/ 511
30 ⁰ ,0 ⁰	$22.4^{\circ}-65.7^{\circ}$	(i)	60.75	39.79	1.527	1.292
		(ii)	61.79	44.08	1.402	1.293
		(iii)	68.16	49.24	1.384	1.291
	$150^{\circ}-90^{\circ}$	(i)	70.74	51.24	1.381	1.247
		(ii)	75.39	51.76	1.457	1.247
		(iii)	93.38	65.37	1.429	1.246
$150^{0}, 0^{0}$	$22.4^{\circ}-65.7^{\circ}$	(i)	60.75	39.79	1.527	1.316
		(ii)	59.70	35.79	1.668	1.290
		(iii)	66.41	40.17	1.653	1.288
	$150^{\circ}-90^{\circ}$	(i)	70.74	51.24	1.381	1.247
		(ii)	66.30	50.60	1.310	1.246
		(iii)	83.45	62.77	1.330	1.246
$\theta_{\gamma} \phi_{\gamma}$	θ_{cm}		120 Sn: σ_2 [mb]	⁵⁸ Ni: σ ₂ [mb]	ratio	double
			$^{58}Ni \rightarrow ^{120}Sn$	$^{58}Ni \rightarrow ^{120}Sn$	¹²⁰ Sn/ ⁵⁸ Ni	ratio $^{112}Sn/^{120}Sn$
			175MeV	175MeV		511/ 511
30 ⁰ ,0 ⁰	$22.2^{\circ}-65.0^{\circ}$	(i)	86.46	41.46	2.085	0.9455
		(ii)	87.84	45.94	1.912	0.9477
		(iii)	95.97	51.26	1.872	0.9544
	$150^{\circ}-90^{\circ}$	(i)	94.53	54.17	1.745	0.9861
		(ii)	100.61	54.64	1.841	0.9860
		(iii)	124.50	69.03	1.804	0.9869
$150^{0}, 0^{0}$	$22.2^{\circ}-65.0^{\circ}$	(i)	86.46	41.46	2.085	0.9633
		(ii)	85.05	37.28	2.281	0.9433
		(iii)	93.70	41.80	2.242	0.9500
	$150^{0}-90^{0}$	(i)	94.53	54.17	1.745	0.9861
		(ii)	88.72	53.57	1.656	0.9860
		(iii)	111.61	66.45	1.680	0.9863

Coulomb excitation calculations are performed with FORTRAN program: *lell30e1.f* <u>input-file:</u> input, <u>output-file:</u> output and anggro.

Cross sections [barns] are integrated with FORTRAN program: *angint.f* <u>input-file:</u> INPUTang and coulex (see above), <u>output-file:</u> OUTPUT (www-linux.gsi.de/~wolle/INDIA)

θ_{lab}	θ_{cm}	¹¹² Sn : σ_2 [mb]	⁵⁸ Ni: σ_2 [mb]	ratio
		$^{58}Ni \rightarrow ^{112}Sn$	$^{58}Ni \rightarrow ^{112}Sn$	¹¹² Sn/ ⁵⁸ Ni
		175MeV	175MeV	
$15^{\circ}-20^{\circ}$	$22.7^{\circ}-30.2^{\circ}$	3.36	1.23	2.732
$20^{\circ}-25^{\circ}$	$30.2^{\circ}-37.6^{\circ}$	7.53	3.32	2.268
$25^{\circ}-30^{\circ}$	$37.6^{\circ}-45.0^{\circ}$	11.95	5.82	2.053
$30^{\circ}-35^{\circ}$	$45.0^{\circ}-52.3^{\circ}$	15.30	7.95	1.925
$35^{\circ}-40^{\circ}$	$52.3^{\circ}-59.4^{\circ}$	17.13	9.32	1.838
$40^{\circ}-45^{\circ}$	$59.4^{\circ}-66.5^{\circ}$	18.28	10.24	1.785
$15^{\circ}-45^{\circ}$	$22.7^{\circ}-66.5^{\circ}$	73.56	37.88	1.942
$15^{\circ}-20^{\circ}$	$150^{\circ}-140^{\circ}$	6.82	3.87	1.762
$20^{\circ}-25^{\circ}$	$140^{\circ}-130^{\circ}$	9.28	5.32	1.744
$25^{\circ}-30^{\circ}$	$130^{\circ}-120^{\circ}$	12.04	6.96	1.730
$30^{\circ}-35^{\circ}$	$120^{\circ}-110^{\circ}$	15.05	8.78	1.714
$35^{\circ}-40^{\circ}$	$110^{\circ}-100^{\circ}$	18.21	10.68	1.705
$40^{\circ}-45^{\circ}$	$100^{\circ}-90^{\circ}$	21.31	12.50	1.705
$15^{\circ}-45^{\circ}$	$150^{\circ}-90^{\circ}$	82.70	48.11	1.719

θ_{lab}	θ_{cm}	¹¹⁶ Sn: σ_2 [mb]	⁵⁸ Ni: σ_2 [mb]	ratio	double ratio
		$^{58}Ni \rightarrow ^{116}Sn$	$^{58}Ni \rightarrow ^{116}Sn$	¹¹⁶ Sn/ ⁵⁸ Ni	$^{112}Sn/^{116}Sn$
		175MeV	175MeV		
$15^{\circ}-20^{\circ}$	$22.4^{\circ}-29.8^{\circ}$	2.50	1.29	1.938	1.410
$20^{\circ}-25^{\circ}$	$29.8^{\circ}-37.2^{\circ}$	5.97	3.50	1.706	1.329
$25^{\circ}-30^{\circ}$	$37.2^{\circ}-44.5^{\circ}$	9.56	6.08	1.572	1.306
$30^{\circ}-35^{\circ}$	$44.5^{\circ}-51.7^{\circ}$	12.43	8.34	1.490	1.292
$35^{\circ}-40^{\circ}$	51.7° - 58.7°	14.07	9.76	1.442	1.275
40^{0} - 45^{0}	58.7° - 65.7°	15.14	10.75	1.408	1.268
$15^{\circ}-45^{\circ}$	$22.4^{\circ}-65.7^{\circ}$	59.67	39.71	1.503	1.292
$15^{\circ}-20^{\circ}$	$150^{\circ}-140^{\circ}$	5.81	4.11	1.414	1.246
$20^{\circ}-25^{\circ}$	$140^{\circ}-130^{\circ}$	7.92	5.65	1.402	1.244
$25^{\circ}-30^{\circ}$	$130^{\circ}-120^{\circ}$	10.27	7.40	1.388	1.246
$30^{\circ}-35^{\circ}$	$120^{\circ}-110^{\circ}$	12.84	9.33	1.376	1.246
$35^{\circ}-40^{\circ}$	110^{0} - 100^{0}	15.52	11.35	1.367	1.247
$40^{\circ}-45^{\circ}$	$100^{\circ}-90^{\circ}$	18.13	13.30	1.363	1.251
$15^{\circ}-45^{\circ}$	$150^{\circ}-90^{\circ}$	70.50	51.13	1.379	1.247
θ_{lab}	θ_{cm}	¹²⁰ Sn: σ_2 [mb]	⁵⁸ Ni: $\sigma_2[mb]$	ratio	double ratio
θ_{lab}	θ_{cm}	$^{120}\text{Sn: }\sigma_2[\text{mb}]$ $^{58}\text{Ni} \rightarrow ^{120}\text{Sn}$	${}^{58}\text{Ni: } \sigma_2[\text{mb}]$ ${}^{58}\text{Ni} \rightarrow {}^{120}\text{Sn}$	ratio ¹²⁰ Sn/ ⁵⁸ Ni	double ratio 112 Sn/ 120 Sn
θ _{lab}	θ _{cm}	¹²⁰ Sn: σ ₂ [mb] ⁵⁸ Ni→ ¹²⁰ Sn 175MeV	⁵⁸ Ni: σ ₂ [mb] ⁵⁸ Ni→ ¹²⁰ Sn 175MeV	ratio ¹²⁰ Sn/ ⁵⁸ Ni	double ratio ¹¹² Sn/ ¹²⁰ Sn
θ_{lab}	θ _{cm} 22.2 ⁰ -29.5 ⁰	$\begin{array}{c} {}^{120}\text{Sn: } \sigma_2[\text{mb}] \\ {}^{58}\text{Ni} \rightarrow {}^{120}\text{Sn} \\ 175\text{MeV} \\ 4.36 \end{array}$	58 Ni: σ ₂ [mb] 58 Ni→ 120 Sn 175MeV 1.35	ratio ¹²⁰ Sn/ ⁵⁸ Ni 3.230	double ratio ¹¹² Sn/ ¹²⁰ Sn 0.846
θ_{lab} $15^{0}-20^{0}$ $20^{0}-25^{0}$	θ _{cm} 22.2 ⁰ -29.5 ⁰ 29.5 ⁰ -36.8 ⁰	$ \begin{array}{r} ^{120}\text{Sn: } \sigma_2[\text{mb}] \\ ^{58}\text{Ni} \rightarrow {}^{120}\text{Sn} \\ 175\text{MeV} \\ 4.36 \\ 9.36 \end{array} $	58Ni: σ ₂ [mb] 58Ni→ 120 Sn 175MeV 1.35 3.62	ratio ¹²⁰ Sn/ ⁵⁸ Ni 3.230 2.586	$\frac{\text{double ratio}}{^{112}\text{Sn}/^{120}\text{Sn}}$ 0.846 0.877
$\begin{array}{c} \theta_{lab} \\ \hline 15^{0} - 20^{0} \\ 20^{0} - 25^{0} \\ \hline 25^{0} - 30^{0} \end{array}$	θ _{cm} 22.2 ⁰ -29.5 ⁰ 29.5 ⁰ -36.8 ⁰ 36.8 ⁰ -44.0 ⁰	$\begin{array}{c} {}^{120}\text{Sn: } \sigma_2[\text{mb}] \\ {}^{58}\text{Ni} \rightarrow {}^{120}\text{Sn} \\ 175\text{MeV} \\ \hline 4.36 \\ 9.36 \\ \hline 13.99 \end{array}$	58Ni: σ ₂ [mb] 58Ni→ 120 Sn 175MeV 1.35 3.62 6.29	ratio ¹²⁰ Sn/ ⁵⁸ Ni 3.230 2.586 2.224	double ratio ¹¹² Sn/ ¹²⁰ Sn 0.846 0.877 0.923
$\begin{array}{c} \theta_{lab} \\ \hline 15^{0} - 20^{0} \\ 20^{0} - 25^{0} \\ 25^{0} - 30^{0} \\ 30^{0} - 35^{0} \end{array}$	θ_{cm} $22.2^{0}-29.5^{0}$ $29.5^{0}-36.8^{0}$ $36.8^{0}-44.0^{0}$ $44.0^{0}-51.1^{0}$	$\begin{array}{c} {}^{120}\text{Sn: } \sigma_2[\text{mb}] \\ {}^{58}\text{Ni} \rightarrow {}^{120}\text{Sn} \\ 175\text{MeV} \\ \hline 4.36 \\ 9.36 \\ 13.99 \\ 17.44 \end{array}$	58Ni: σ ₂ [mb] 58Ni→ ¹²⁰ Sn 175MeV 1.35 3.62 6.29 8.63	ratio ¹²⁰ Sn/ ⁵⁸ Ni <u>3.230</u> 2.586 2.224 2.021	double ratio ¹¹² Sn/ ¹²⁰ Sn 0.846 0.877 0.923 0.953
$\begin{array}{c} \theta_{lab} \\ \hline 15^{0} - 20^{0} \\ \hline 20^{0} - 25^{0} \\ \hline 25^{0} - 30^{0} \\ \hline 30^{0} - 35^{0} \\ \hline 35^{0} - 40^{0} \end{array}$	$\begin{array}{r} \theta_{cm} \\ \hline 22.2^{0}\text{-}29.5^{0} \\ \hline 29.5^{0}\text{-}36.8^{0} \\ \hline 36.8^{0}\text{-}44.0^{0} \\ \hline 44.0^{0}\text{-}51.1^{0} \\ \hline 51.1^{0}\text{-}58.1^{0} \end{array}$	$ \begin{array}{c} {}^{120}\text{Sn: } \sigma_2[\text{mb}] \\ {}^{58}\text{Ni} \rightarrow {}^{120}\text{Sn} \\ 175\text{MeV} \\ 4.36 \\ 9.36 \\ 13.99 \\ 17.44 \\ 19.50 \end{array} $	58Ni: σ ₂ [mb] 58Ni→ 120 Sn 175MeV 1.35 3.62 6.29 8.63 10.29	ratio ¹²⁰ Sn/ ⁵⁸ Ni 3.230 2.586 2.224 2.021 1.895	double ratio ¹¹² Sn/ ¹²⁰ Sn 0.846 0.877 0.923 0.953 0.970
$\begin{array}{c} \theta_{lab} \\ \hline 15^{0} - 20^{0} \\ \hline 20^{0} - 25^{0} \\ \hline 25^{0} - 30^{0} \\ \hline 30^{0} - 35^{0} \\ \hline 35^{0} - 40^{0} \\ \hline 40^{0} - 45^{0} \\ \hline \end{array}$	θ_{cm} $\frac{22.2^{0}-29.5^{0}}{29.5^{0}-36.8^{0}}$ $\frac{36.8^{0}-44.0^{0}}{44.0^{0}-51.1^{0}}$ $\frac{51.1^{0}-58.1^{0}}{58.1^{0}-65.0^{0}}$	$\begin{array}{c} ^{120}\text{Sn: } \sigma_2[\text{mb}] \\ ^{58}\text{Ni} \rightarrow ^{120}\text{Sn} \\ 175\text{MeV} \\ \hline 4.36 \\ 9.36 \\ \hline 13.99 \\ 17.44 \\ 19.50 \\ 20.37 \\ \end{array}$	$\begin{array}{c} {}^{58}\text{Ni: } \sigma_2[\text{mb}] \\ {}^{58}\text{Ni} \rightarrow {}^{120}\text{Sn} \\ 175\text{MeV} \\ \hline 1.35 \\ 3.62 \\ \hline 6.29 \\ 8.63 \\ 10.29 \\ 11.21 \end{array}$	ratio ¹²⁰ Sn/ ⁵⁸ Ni <u>3.230</u> 2.586 2.224 2.021 1.895 1.817	double ratio ¹¹² Sn/ ¹²⁰ Sn 0.846 0.877 0.923 0.953 0.970 0.982
$\begin{array}{c} \theta_{lab} \\ \hline 15^{0} - 20^{0} \\ 20^{0} - 25^{0} \\ 25^{0} - 30^{0} \\ 30^{0} - 35^{0} \\ 35^{0} - 40^{0} \\ 40^{0} - 45^{0} \\ \hline 15^{0} - 45^{0} \\ \hline \end{array}$	θ_{cm} $22.2^{0}-29.5^{0}$ $29.5^{0}-36.8^{0}$ $36.8^{0}-44.0^{0}$ $44.0^{0}-51.1^{0}$ $51.1^{0}-58.1^{0}$ $58.1^{0}-65.0^{0}$ $22.2^{0}-65.0^{0}$	$\begin{array}{c} ^{120}\text{Sn: } \sigma_2[\text{mb}] \\ ^{58}\text{Ni} \rightarrow ^{120}\text{Sn} \\ 175\text{MeV} \\ \hline 4.36 \\ 9.36 \\ 13.99 \\ 17.44 \\ 19.50 \\ 20.37 \\ \hline 85.02 \\ \end{array}$	58Ni: σ ₂ [mb] 58Ni→ ¹²⁰ Sn 175MeV 1.35 3.62 6.29 8.63 10.29 11.21 41.38	ratio ¹²⁰ Sn/ ⁵⁸ Ni 3.230 2.586 2.224 2.021 1.895 1.817 2.055	double ratio ¹¹² Sn/ ¹²⁰ Sn 0.846 0.877 0.923 0.953 0.953 0.970 0.982 0.945
$\begin{array}{c} \theta_{lab} \\ \hline \\ 15^{0} - 20^{0} \\ 20^{0} - 25^{0} \\ \hline 25^{0} - 30^{0} \\ \hline 30^{0} - 35^{0} \\ \hline 35^{0} - 40^{0} \\ \hline 40^{0} - 45^{0} \\ \hline 15^{0} - 45^{0} \\ \hline 15^{0} - 20^{0} \end{array}$	$\begin{array}{r} \theta_{cm} \\ \hline 22.2^{0}\text{-}29.5^{0} \\ \hline 29.5^{0}\text{-}36.8^{0} \\ \hline 36.8^{0}\text{-}44.0^{0} \\ \hline 44.0^{0}\text{-}51.1^{0} \\ \hline 51.1^{0}\text{-}58.1^{0} \\ \hline 58.1^{0}\text{-}65.0^{0} \\ \hline \textbf{22.2^{0}\text{-}65.0^{0}} \\ \hline 150^{0}\text{-}140^{0} \end{array}$	$\begin{array}{c} ^{120} \text{Sn: } \sigma_2[\text{mb}] \\ ^{58} \text{Ni} \rightarrow ^{120} \text{Sn} \\ 175 \text{MeV} \\ 4.36 \\ 9.36 \\ 13.99 \\ 17.44 \\ 19.50 \\ 20.37 \\ \textbf{85.02} \\ 7.93 \\ \end{array}$	58Ni: σ ₂ [mb] 58Ni→ ¹²⁰ Sn 175MeV 1.35 3.62 6.29 8.63 10.29 11.21 41.38 4.35	ratio ¹²⁰ Sn/ ⁵⁸ Ni 3.230 2.586 2.224 2.021 1.895 1.817 2.055 1.823	double ratio ¹¹² Sn/ ¹²⁰ Sn 0.846 0.877 0.923 0.953 0.953 0.970 0.982 0.945 0.967
$\begin{array}{c} \theta_{lab} \\ \hline 15^{0}\text{-}20^{0} \\ 20^{0}\text{-}25^{0} \\ 25^{0}\text{-}30^{0} \\ 30^{0}\text{-}35^{0} \\ 35^{0}\text{-}40^{0} \\ 40^{0}\text{-}45^{0} \\ \hline 15^{0}\text{-}45^{0} \\ 15^{0}\text{-}20^{0} \\ 20^{0}\text{-}25^{0} \end{array}$	θ_{cm} $22.2^{0}-29.5^{0}$ $29.5^{0}-36.8^{0}$ $36.8^{0}-44.0^{0}$ $44.0^{0}-51.1^{0}$ $51.1^{0}-58.1^{0}$ $58.1^{0}-65.0^{0}$ $22.2^{0}-65.0^{0}$ $150^{0}-140^{0}$ $140^{0}-130^{0}$	$\begin{array}{c} ^{120}\text{Sn: } \sigma_2[\text{mb}] \\ ^{58}\text{Ni} \rightarrow ^{120}\text{Sn} \\ 175\text{MeV} \\ \hline 4.36 \\ 9.36 \\ 13.99 \\ 17.44 \\ 19.50 \\ 20.37 \\ \hline 85.02 \\ 7.93 \\ 10.71 \\ \end{array}$		ratio ¹²⁰ Sn/ ⁵⁸ Ni 3.230 2.586 2.224 2.021 1.895 1.817 2.055 1.823 1.791	double ratio ¹¹² Sn/ ¹²⁰ Sn 0.846 0.877 0.923 0.953 0.953 0.970 0.982 0.945 0.967 0.974
$\begin{array}{c} \theta_{lab} \\ \hline 15^{0}\text{-}20^{0} \\ 20^{0}\text{-}25^{0} \\ 25^{0}\text{-}30^{0} \\ \hline 30^{0}\text{-}35^{0} \\ \hline 35^{0}\text{-}40^{0} \\ 40^{0}\text{-}45^{0} \\ \hline 15^{0}\text{-}45^{0} \\ \hline 15^{0}\text{-}20^{0} \\ 20^{0}\text{-}25^{0} \\ \hline 25^{0}\text{-}30^{0} \end{array}$	$\begin{array}{r} \theta_{cm} \\ \hline \\ 22.2^{0}\text{-}29.5^{0} \\ \hline 29.5^{0}\text{-}36.8^{0} \\ \hline 36.8^{0}\text{-}44.0^{0} \\ \hline 44.0^{0}\text{-}51.1^{0} \\ \hline 51.1^{0}\text{-}58.1^{0} \\ \hline 58.1^{0}\text{-}65.0^{0} \\ \hline 22.2^{0}\text{-}65.0^{0} \\ \hline 150^{0}\text{-}140^{0} \\ \hline 140^{0}\text{-}130^{0} \\ \hline 130^{0}\text{-}120^{0} \end{array}$	$ \begin{array}{c} ^{120} \text{Sn: } \sigma_2[\text{mb}] \\ ^{58} \text{Ni} \rightarrow ^{120} \text{Sn} \\ 175 \text{MeV} \\ 4.36 \\ 9.36 \\ 13.99 \\ 17.44 \\ 19.50 \\ 20.37 \\ \hline \textbf{85.02} \\ 7.93 \\ 10.71 \\ 13.79 \\ \end{array} $	58Ni: σ ₂ [mb] 58Ni→ 120 Sn 175MeV 1.35 3.62 6.29 8.63 10.29 11.21 41.38 4.35 5.98 7.83	ratio ¹²⁰ Sn/ ⁵⁸ Ni 3.230 2.586 2.224 2.021 1.895 1.817 2.055 1.823 1.791 1.761	double ratio ¹¹² Sn/ ¹²⁰ Sn 0.846 0.877 0.923 0.953 0.953 0.970 0.982 0.945 0.967 0.974 0.982
$\begin{array}{c} \theta_{lab} \\ \hline 15^{0}\text{-}20^{0} \\ 20^{0}\text{-}25^{0} \\ 25^{0}\text{-}30^{0} \\ \hline 30^{0}\text{-}35^{0} \\ \hline 35^{0}\text{-}40^{0} \\ 40^{0}\text{-}45^{0} \\ \hline 15^{0}\text{-}45^{0} \\ \hline 15^{0}\text{-}20^{0} \\ 20^{0}\text{-}25^{0} \\ \hline 25^{0}\text{-}30^{0} \\ \hline 30^{0}\text{-}35^{0} \end{array}$	$\begin{array}{r} \theta_{cm} \\ \hline \\ 22.2^{0}-29.5^{0} \\ 29.5^{0}-36.8^{0} \\ \hline \\ 36.8^{0}-44.0^{0} \\ 44.0^{0}-51.1^{0} \\ \hline \\ 51.1^{0}-58.1^{0} \\ \hline \\ 58.1^{0}-65.0^{0} \\ \hline \\ 22.2^{0}-65.0^{0} \\ \hline \\ 150^{0}-140^{0} \\ \hline \\ 140^{0}-130^{0} \\ \hline \\ 130^{0}-120^{0} \\ \hline \\ 120^{0}-110^{0} \\ \end{array}$	$\begin{array}{c} ^{120} \text{Sn: } \sigma_2[\text{mb}] \\ ^{58} \text{Ni} \rightarrow ^{120} \text{Sn} \\ 175 \text{MeV} \\ \hline 4.36 \\ 9.36 \\ 13.99 \\ 17.44 \\ 19.50 \\ 20.37 \\ \hline 85.02 \\ 7.93 \\ 10.71 \\ 13.79 \\ 17.14 \\ \end{array}$	$58 \text{Ni: } \sigma_2[\text{mb}] \\ 58 \text{Ni} \rightarrow 120 \text{Sn} \\ 175 \text{MeV} \\ 1.35 \\ 3.62 \\ 6.29 \\ 8.63 \\ 10.29 \\ 11.21 \\ 41.38 \\ 4.35 \\ 5.98 \\ 7.83 \\ 9.87 \\ 10.29 \\ 11.21 \\ 1.21 $	ratio ¹²⁰ Sn/ ⁵⁸ Ni 3.230 2.586 2.224 2.021 1.895 1.817 2.055 1.823 1.791 1.761 1.737	double ratio ¹¹² Sn/ ¹²⁰ Sn 0.846 0.877 0.923 0.953 0.970 0.982 0.945 0.967 0.974 0.982 0.982 0.987
$\begin{array}{c} \theta_{lab} \\ \hline 15^{0}\text{-}20^{0} \\ 20^{0}\text{-}25^{0} \\ 25^{0}\text{-}30^{0} \\ 30^{0}\text{-}35^{0} \\ \hline 35^{0}\text{-}40^{0} \\ 40^{0}\text{-}45^{0} \\ \hline 15^{0}\text{-}20^{0} \\ 20^{0}\text{-}25^{0} \\ \hline 25^{0}\text{-}30^{0} \\ \hline 30^{0}\text{-}35^{0} \\ \hline 35^{0}\text{-}40^{0} \end{array}$	$\begin{array}{r} \theta_{cm} \\ \hline \\ 22.2^0-29.5^0 \\ 29.5^0-36.8^0 \\ \hline \\ 36.8^0-44.0^0 \\ \hline \\ 44.0^0-51.1^0 \\ \hline \\ 51.1^0-58.1^0 \\ \hline \\ 58.1^0-65.0^0 \\ \hline \\ 22.2^0-65.0^0 \\ \hline \\ 150^0-140^0 \\ \hline \\ 140^0-130^0 \\ \hline \\ 130^0-120^0 \\ \hline \\ 120^0-110^0 \\ \hline \\ 110^0-100^0 \end{array}$	$\begin{array}{c} ^{120} \text{Sn: } \sigma_2[\text{mb}] \\ ^{58} \text{Ni} \rightarrow ^{120} \text{Sn} \\ 175 \text{MeV} \\ \hline 4.36 \\ 9.36 \\ \hline 13.99 \\ 17.44 \\ 19.50 \\ 20.37 \\ \hline 85.02 \\ \hline 7.93 \\ 10.71 \\ \hline 13.79 \\ 17.14 \\ 20.63 \\ \hline \end{array}$		ratio ¹²⁰ Sn/ ⁵⁸ Ni 3.230 2.586 2.224 2.021 1.895 1.817 2.055 1.823 1.791 1.761 1.737 1.721	double ratio ¹¹² Sn/ ¹²⁰ Sn 0.846 0.877 0.923 0.953 0.953 0.970 0.982 0.945 0.967 0.974 0.982 0.987 0.991
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} \theta_{cm} \\ \hline \\ 22.2^0-29.5^0 \\ 29.5^0-36.8^0 \\ \hline \\ 36.8^0-44.0^0 \\ \hline \\ 44.0^0-51.1^0 \\ \hline \\ 51.1^0-58.1^0 \\ \hline \\ 58.1^0-65.0^0 \\ \hline \\ 22.2^0-65.0^0 \\ \hline \\ 150^0-140^0 \\ \hline \\ 140^0-130^0 \\ \hline \\ 130^0-120^0 \\ \hline \\ 120^0-110^0 \\ \hline \\ 110^0-100^0 \\ \hline \\ 100^0-90^0 \end{array}$	$ \begin{array}{c} ^{120} \text{Sn: } \sigma_2[\text{mb}] \\ ^{58} \text{Ni} \rightarrow ^{120} \text{Sn} \\ 175 \text{MeV} \\ \hline 4.36 \\ 9.36 \\ 13.99 \\ 17.44 \\ 19.50 \\ 20.37 \\ \hline 85.02 \\ \hline 7.93 \\ 10.71 \\ 13.79 \\ 17.14 \\ 20.63 \\ \hline 24.06 \\ \hline \end{array} $		ratio ¹²⁰ Sn/ ⁵⁸ Ni 3.230 2.586 2.224 2.021 1.895 1.817 2.055 1.823 1.791 1.761 1.761 1.737 1.721 1.711	double ratio ¹¹² Sn/ ¹²⁰ Sn 0.846 0.877 0.923 0.953 0.970 0.982 0.945 0.967 0.974 0.982 0.982 0.987 0.987 0.991 0.997

expected beam current: $0.5 pnA \equiv 3.125 \cdot 10^9 ions / s$ target thickness: $0.5 mg / cm^2 \equiv 2.69 \cdot 10^{18} nuclei / cm^2$

event rate $[s^{-1}]$ = luminosity * cross section = $8.40 \cdot 10^{27} \cdot cross \sec tion [cm^2]$

For a cross section of 100mb, an intrinsic photopeak efficiency $\varepsilon = 0.13$ and a solid angle of $\Omega = 0.0183$ (r=3.25cm, R=12cm) one obtains an event rate of 2[s⁻¹].

Appendix A: Doppler shift correction

2.case: ⁵⁸Ni measured with PPAC, ¹¹²Sn excited

3.case: ¹¹²Sn measured with PPAC, ¹¹²Sn excited

4.case: ¹¹²Sn measured with PPAC, ⁵⁸Ni excited

Appendix B: Analysis of Target Material

4/112236/97

CERTIFICATE OF ANALYSIS

#1

Name of Preparation: 112_{Sn} Country of Destination: Germany Consignee: GSI

CHARACTERISTICS OF ISOTOPE-ENRICHED PRODUCT

1. Weight of enriched isotope:

Compound weight: 5,000 mg.

Element weight: 5,000 mg.

Form: Sn (Metal Foil)

2. Isotopic composition:

Isotope	112	114	115	116	117	118	119	120
Enrichment (%)	99.5+/- 0.2	0.2+/- 0.1	<0.1	<0.1	<0.1	0.3+/- 0.1	<0.05	<0.05
Isotpe	122	124	a factoria	1 - 13		1.1	- 12 E	
Enrichment (%)	<0.05	<0.05			1.63.23	in the		

3. Chemical Impurities:

Cmpds of	Ca	Si	Fe	Cu	Ag	Al	Mg	Mn
P.P.M.	100	50	60	5	4	1	80	15
Cmpds of	Pb	Sb	Ni	Cr			1.1.1.1	
P.P.M.	25	<50	<50	<50			e	a ant

4. Analytical method: ICP-MS

Signature

(PLEASE NOTE THIS MATERIAL IS NOT APPROVED FOR USE IN HUMANS)

15 WERTHEIM COURT, SUITE 404, RICHMOND HILL, ONTARIO, CANADA 14B 3H7 Tolophone: (905) 707-7000 Fax: (905) 707-0700

16 Sh 60%

3/27501, 11. Juni 199

.

影。豪华。

EXPORT

QUALITY CERTIFICATE No 89-4.a.

Name of preparation - TIN-118 Supplier v/o "Techsnabexport" Country of distination FRG Order No 1860348/02-142-0175

CHARACTERISTICS OF ISOTOPE - ENRICHED PRODUCT

1. Weight of enriched isotopic mixture Sn Compound weight 5000 ,mg, element weight 2. Isotopic content: 5000 mg.

Isotope	118	114	115	116	117	118
Percentage (%%)	< 0.0800	< 0.0100	0.0400	98.0000 +-0.100	0.6800	0.7000
;l	i	I,		l		

Isotop	119 [120	128	124	1	-
Percentage (%%)	0.0000	0.3100	0.0400	0,1400		

3. Chemical admixtures:

l

E.

Elements	Fe	Al	Si	Cr	Ni	Cu	Pb
Percentage (%%)	0.00800	0.00300	0.00500	0.00300	0.00500	0.00400	0.00800
Elements	Sb	Bi	Zn	As			
Percentage (%%)	¢.00300	0.00200	0.08400	0.00080			

Measurement data of above-mentioned preparation comply with technical, specifications now in force USSR and with order requirements.

Signature Agny

ia Name of preparation Наименование препарата Contractor Заказчик Order No5 Заказ-наряд Country of destination	9.02 MARK TIN - 120	1983			
Name of preparation Hammenosaame npenspara Contractor Baxasynx Order No 5 Baxas-nepsg Country of destination	TIN - 120				
Накыскование препарата Contractor Заказчик Order No 5 Заказ-наряд Country of destination	· .				83
Order No 5 Заказ-наряд Country of destination					
Country of destination	4/02-117-3164				
Страна назначения	BRD				
Consignee			_		
Marking		7			
I. Weight of enriched isotopic mixture Bec oforameunoñ moronnoñ cmecu Compound weight	ng, eiemei	n ni weight		200)m
2. Isotopic content Изотопный состав	МГ элемен	тарный			2
isotope Haoron 112 114	115 116 11	7 118	119 12	0 122	124
Percentage Cosepwanne (%%) <0,010,01	.0,01 0,04 0,	06 0,10	0,13 99,	,1 0,05	0,0
3. Chemical admixtures: Химические примесы					Bourness and
Elements Fo Al Si Cr Ni.	Cu Pb Sb Bi	Zn As			
Регсептаде 9 6 00 00 00 00 00 00 00 00 00 00 00 00 0	,006 ,002 ,003	,003			
4. Remark: VV	° ° ° °	ov ov			
isotope Изотоп Percentage Созержание (%%) 3. Chemical admixtures: Химяческие прямеся Elements Заементы Percentage Созержание (%%) 0,01 0	115 116 11 0,01 0,04 0, 0 Pb Sb Bi 0 0 0 0 0	7 118 06 0,10 Zn As	119 12 ±0 0,13 99,	0 122 ,1 6 0,05	

isotope	I^{π} energy(MeV)	$I_i \rightarrow I_f B(E2; I_i \rightarrow I_f)$	eb	τ (ps)
112 Sn	2_1^+ 1.257	$0_1^+ \rightarrow 2_1^+ 0.240(14)$	0.490(14)	0.542(52)
	2_2^+ 2.151	$0_1^+ \rightarrow 2_2^+ 0.0007(2)$	0.026(4)	
		$2_1^+ \rightarrow 2_2^+ 0.037(15)$	0.430(80)	
	0_2^+ 2.191			
	41 ⁺ 2.355	$2_1^+ \rightarrow 4_1^+ 0.032(5)$	0.403(32)	
¹¹⁶ Sn	2_1^+ 1.294	$0_1^+ \rightarrow 2_1^+ 0.209(6)$	0.457(7)	0.538(15)
	2_2^+ 2.112	$0_1^+ \rightarrow 2_2^+ 0.0011(4)$	0.032(6)	
		$2_1^+ \rightarrow 2_2^+ 0.013(5)$	0.255(45)	
	41 ⁺ 2.391	$2_1^+ \rightarrow 4_1^+ 0.137(25)$	0.827(73)	
		$2_2^+ \rightarrow 4_1^+ 0.360(72)$	1.342(128)	
¹²⁰ Sn	2_1^+ 1.171	$0_1^+ \rightarrow 2_1^+ 0.202(4)$	0.449(4)	0.918(18)
			``````````````````````````````````````	, ,
⁵⁸ Ni	$2_1^+$ 1.454	$0_1^+ \rightarrow 2_1^+  0.0705(18)$	0.266(3)	0.891(22)
		$0_1^+ \rightarrow 2_1^+  0.0493(18)$	0.222(4)	
	41 ⁺ 2.459	$2_1^+ \rightarrow 4_1^+  0.0264(24)$	0.363(17)	

## **Appendix C: Nuclear Structure Data**

lifetime of the  $2^+$  state:

$$\tau[s] = \left\{ \left[ 1 + \alpha_T(E2) \right] \cdot 1.225 \cdot 10^{13} \cdot E_{\gamma} \left[ MeV \right]^5 \cdot B(E2; 2^+ \to 0^+) \left[ e^2 b^2 \right] \right\}^{-1}$$

relation between B(E2)-values:

$$B(E2;2^+ \to 0^+) = \frac{1}{5} \cdot B(E2;0^+ \to 2^+)$$

reduced matrix elements:

$$B(E2;0^+ \rightarrow 2^+) = \left\langle 2^+ \| M(E2) \| 0^+ \right\rangle^2$$

Appendix D	: Input Data fo	r Coulomb Excitation-Program I	ell30e1.f
------------	-----------------	--------------------------------	-----------

data card #	parameter	input describtion		
1	NMAX	number of nuclear states		
2	NCM	index of level for which the lab-transformation is done		
3	NTIME	-		
4	XIMAX	largest number for ξ-parameter		
5	EMMAX1	largest magnetic quantum number considered		
6	ACCUR	absolute accuracy to which the final probabilities		
		should be computed		
	QPAR	effect of the giant dipole resonance		
7	OUXI	print-out of ξ-matrix		
8	OUPSI	print-out of ψ-matrix		
9	OUAMP	print-out of excitation amplitudes		
10	OUPROW	print-out of excitation probability during integration		
11	OUANG0	print-out of angular distribution coefficients $\alpha^0$		
12	OUANG1	print-out of angular distribution coefficients $\alpha^1$		
13	OUANG2	print-out of angular distribution coefficients $\alpha^2$		
14	OUANG3	print-out of angular distribution coefficients $\alpha^3$		
15	NCORR	-		
16	INTERV	number of integration steps		
17	Z1	charge number of the projectile		
	A1	mass of projectile [amu]		
18	Z2	charge number of the target nucleus		
	A2	mass of target nucleus [amu]		
19	EP	laboratory energy of projectile [MeV]		
20	TLBDG	deflection angle [degree] in the lab-system		
21	THETA	deflection angle [degree] in the cm-system		
22	Ν	index of level		
	SPIN(N)	spin quantum number of the Nth nuclear state		
	EN(N)	excitation energy of the Nth nuclear state		
	IPAR(N)	parity (-1 neg, 1 pos) of the Nth nuclear state		
23	N	index of level		
	М	index of level (M≥N)		
	ME(N,M,LA)	electric matrix element		
	LA	multipolarity (1≤LA≤6)		
0		starts the calculation		
500		stops the calculation		

data card #	parameter	input describtion		
1	I I11	output of the conversion coefficients (E2,M1,E1,E3)		
	I12	possible decays of a state		
	I13	HN (lifetime of the state)		
	I14	$G_{\kappa}(N,M)$		
	I15	$F_{K}(N,M)$		
	I16	$\alpha^{3}(\mathbf{k},\kappa)$ +feeding		
	I17	Spin(N),Spin(M),W(N,K)		
	I18	Spin(N),Spin(M),DS(N,K)		
	119	$\gamma$ -ray angular distribution $\theta_{\gamma}=0^{0},180^{0},5^{0}$ $\phi_{\gamma}=0^{0}$ and $180^{0}$		
	I20	-		
	I21	excitation probabilities, cross sections, $\alpha^{3}(k,\kappa)$		
	I22	1=solid angle correction, 2= +deorientation, 3= +SB		
	I23	input M1-matrix element + M1 conversion coefficient		
	I24	1=calc. in rest system, >1 input of $\theta_{\gamma}$ , $\phi_{\gamma}$ in rest system		
	I25	projectile excitation		
2	NCCK	number of values given for K-conversion		
	NCCL	number of values given for L-conversion		
	NCCM	number of values given for M-conversion		
3-5	CCE1	lowest tabulated energy to be interpolated, -1.0 for L,M		
	CCE2	lowest tabulated energy of the K, L2, M5 subshell		
	CCMIN	min. energy given in the conversion table		
	CCMAX	max. energy given in the conversion table		
61-	$\alpha_{\rm K}$ ,I=1,NCCK	conversion coefficients (K-shell)		
71-	$\alpha_L$ ,I=1,NCCL	conversion coefficients (L-shell)		
81-	$\alpha_{\rm M}$ ,I=1,NCCM	conversion coefficients (M-shell)		
9	IXYZ	I23=1 IXYZ=initial state		
	JXYZ	I23=1 JXYZ=final state		
	MM1(IXYZ,JXYZ))	I23=1 M1-matrix element (IXYZ→JXYZ)		
10	TT	θγ		
	VGAMMA	φγ		
	VI1	φ ₁		
	VI2	φγ		
	K1LAB	state for cm to lab transformation		
11	$Q_{0}, Q_{2}, Q_{4}$	I22=1 solid angle correction for Ge-detector		
		122=2, 122=3, 122=4, 122=5 (see program)		
12	MZahl	number of theta integrations		
	NORM	normalization, neg. value $\equiv$ Rutherford		
13	XA	initial scattering angle in cm system for integration		
	XE	final scattering angle in cm system for integration		

## **Appendix E: Input Data for Angular Distribution-Program anggro.f**

## **Appendix F: Important Formulas**

nuclear lifetime:

with

$$\tau[s] = \left\{ \sum_{M} \sum_{L} \delta_{N \to M}^{2} (L) \cdot [1 + \alpha_{N \to M} (L)] \right\}^{-1}$$
  
$$\delta_{N \to M}^{2} (E2)[s^{-1}] = 1.225 \cdot 10^{13} \cdot E_{\gamma} [MeV]^{5} \cdot B(E2; I_{N} \to I_{M})[e^{2}b^{2}]$$
  
$$\delta_{N \to M}^{2} (M1)[s^{-1}] = 1.758 \cdot 10^{13} \cdot E_{\gamma} [MeV]^{3} \cdot B(M1; I_{N} \to I_{M}) \left[\frac{e\hbar}{2m_{p}c}\right]^{2}$$
  
$$\delta_{N \to M}^{2} (E1)[s^{-1}] = 1.590 \cdot 10^{17} \cdot E_{\gamma} [MeV]^{3} \cdot B(E1; I_{N} \to I_{M})[eb]$$
  
$$\delta_{N \to M}^{2} (E3)[s^{-1}] = 5.709 \cdot 10^{8} \cdot E_{\gamma} [MeV]^{7} \cdot B(E3; I_{N} \to I_{M})[e^{3}b^{3}]$$

relation between B(E2) values:

$$B(EL; I_N \to I_M) = \frac{2 \cdot I_M + 1}{2 \cdot I_N + 1} \cdot B(EL; I_M \to I_N)$$

reduced matrix element

$$B(EL; I_M \to I_N) = \frac{1}{2 \cdot I_M + 1} \cdot \left\langle I_N \| M(EL) \| I_M \right\rangle^2$$

Coulomb excitation cross section (single state excitation):

$$\sigma_{E2} = 4.918 \cdot (1 + A_1 / A_2)^{-2} \cdot \frac{A_1}{Z_2^2} \cdot (E_{MeV} - (1 + A_1 / A_2) \cdot \Delta E_{MeV}) \cdot \mathbf{B}(E2; 0^+ \rightarrow 2^+) \cdot f_{E2}(\xi)$$

with

$$\xi = \frac{Z_1 \cdot Z_2 \cdot A_1^{1/2} \cdot \Delta E'_{MeV}}{12.65 \cdot \left(E_{MeV} - 0.5 \cdot \Delta E'_{MeV}\right)^{3/2}} \quad with \quad \Delta E'_{MeV} = \left(1 + A_1 / A_2\right) \cdot \Delta E_{MeV}$$

# Appendix G: Transformation of a polar coordinate system from target position to a flat (Ge) detector



**Figure:** Left: polar coordinate system in target position (y-axis points out of plane); center: coordinate system moved in detector position (d=distance between detector and target,  $\psi$ =-20⁰); right: coordinate system rotated around the y-axis ( $\psi$ =-20⁰) to measure events from the target.

1.) Polar coordinate system with its origin in target position (y-axis points upwards)

$$x = r \cdot \sin \mathcal{G} \cdot \cos \varphi$$
$$y = r \cdot \sin \mathcal{G} \cdot \sin \varphi$$
$$z = r \cdot \cos \mathcal{G}$$

2.) The origin of the coordinate system is shifted to the detector surface (d = distance from detector surface to target position,  $\psi$ -angle is negative for the displayed example in figure)

$$x' = x - d \cdot \sin \psi$$
  

$$y' = y$$
  

$$z' = z - d \cdot \cos \psi$$

3.) The coordinate system is rotated around y-axis ( $\psi$ -angle is negative for the displayed example in figure)

$$x'' = x' \cdot \cos \psi - z' \cdot \sin \psi$$
  

$$y'' = y'$$
  

$$z'' = x' \cdot \sin \psi + z' \cdot \cos \psi$$

Boundary condition z"=0 for flat detector surface

$$z'' = 0 = (x - d \cdot \sin \psi) \cdot \sin \psi + (z - d \cdot \cos \psi) \cdot \cos \psi$$
$$= x \cdot \sin \psi + z \cdot \cos \psi - d$$
$$= r \cdot \sin \vartheta \cdot \cos \varphi \cdot \sin \psi + r \cdot \cos \vartheta \cdot \cos \psi - d$$
$$r = \frac{d}{\cos \vartheta \cdot \cos \varphi + \sin \vartheta \cdot \sin \psi \cdot \cos \varphi}$$

One obtains the following relation for a point (x",y") on the detector surface and the polar angle  $\mathcal{P}$  and the azimuthal angle  $\varphi$ :

$$\frac{x''}{d} = \frac{\sin \vartheta \cdot \cos \varphi \cdot \cos \psi - \cos \vartheta \cdot \sin \psi}{\cos \vartheta \cdot \cos \psi + \sin \vartheta \cdot \sin \psi \cdot \cos \varphi}$$
$$\frac{y''}{d} = \frac{\sin \vartheta \cdot \sin \varphi}{\cos \vartheta \cdot \cos \psi + \sin \vartheta \cdot \sin \psi \cdot \cos \varphi}$$
$$\cos \vartheta = \frac{\cos \psi - \frac{x''}{d} \cdot \sin \psi}{\sqrt{\left(\frac{x''}{d}\right)^2 + \left(\frac{y''}{d}\right)^2 + 1}}$$
$$\cos \varphi = \frac{\frac{x''}{d} \cdot \cos \psi + \sin \psi}{\tan \vartheta \cdot \left[\cos \psi - \frac{x''}{d} \cdot \sin \psi\right]}$$

## Calculation of the clover crystal angles

The INGA-clover detector has 4 Ge-crystals which are displayed below



Polar- (9) and azimuthal ( $\varphi$ ) angles of the INGA-clover crystals for  $\psi$ =153⁰, x"/d=y"/d=0.25 and d=12cm

x"/d	y"/d	9	$\varphi$
	-	$(\psi = -153^{\circ})$	$(\psi = -153^{0})$
0.25	0.25	$137.14^{\circ}$	$20.29^{0}$
0.25	-0.25	$137.14^{\circ}$	$-20.29^{\circ}$
-0.25	0.25	$161.27^{0}$	$47.25^{\circ}$
-0.25	-0.25	$161.27^{0}$	$-47.25^{\circ}$