Coulomb excitation of neutron-rich Sn, Te and Xe isotopes beyond N=82

W. Korten, M. Zielinska, E. Clement for the Saclay-Warsaw-GANIL collaboration Other participants: CSNSM Orsay, U. Oslo, IEM-CSIC Madrid, IFIC-CSIC Valencia, TU & GSI Darmstadt, ...

In concertation with the Miniball and PreSpec-AGATA collaboration

Development of collectivity around ¹³²Sn

slight E(2⁺) and B(E2) asymmetries with respect to N=82

 $E(2^+)$ for N=82+x < $E(2^+)$ for N=82-x

B(E2) for N=82+x > B(E2) for N=82-x

except for the Te isotopes !

$$E(2_1^+)B(E2\uparrow) = \frac{2.57Z^2}{A^{2/3}} \left(1.288 - 0.088(N-\bar{N})\right) \quad \text{with} \quad \bar{N} = \frac{A}{2} \frac{1.0070 + 0.0128A^{2/3}}{1 + 0.0064A^{2/3}}$$

Raman's version of Grodzins' formula

Anomalous behaviour of B(E2) values in ¹³⁶Te

shell model $B(E2) = 0.25 e^2 b^2$

D. Radford, A. Covello et al., Phys. Rev. Lett. 88 (2002) 222501

QRPA $B(E2) = 0.09 e^2 b^2$

J. Terasaki et al., Phys. Rev. C66 (2002) 054313

shell model $B(E2) = 0.15 e^2b^2$

N. Shimizu, T. Otsuka et al., Phys. Rev. C 70 (2004) 054313

 $B(E2) = 0.103(15) e^{2}b^{2}$
from low-energy Coulex

D. Radford et al., Phys. Rev. Lett. 88 (2002) 222501 D. Radford et al., Nucl. Phys. A752 (2005) 264c

reanalysing the data yielded slightly larger value

D. Radford, private communication

 $B(E2) = 0.122(24) e^{2}b^{2}$
from lifetime measurement (fast timing)

L.M. Fraile, H. Mach et al., Nucl. Phys. A805 (2008) 218

Measure B(E2) of higher lying states in ¹³⁶Te and extend 2⁺ systematic to ¹³⁸Te &¹⁴⁰Te

Structure of excited states in ¹³⁶Te

First 2+ state: $+D_v > +D_{\pi}$ Second 2+ state: $+D_v -D_{\pi}$

→ smaller B(E2) than in ¹³²Te
 → mixed-symmetry state (M1 decay dominant)

Coulomb excitation of ¹³⁶Te at SPIRAL2 Day-1

Example: ¹³⁶Te + ²⁰⁸Pb @ 540 MeV (safe energy) Beam : 10⁷ pps \rightarrow 1600 Hz (elastic rate for 15° < θ_{Lab} < 50°)

State	energy	cross section	Rate	γ yield	γ branch	
lb	[keV]	s[b]	[Hz]	[cts/UT]	$ _{i}^{p} \rightarrow _{f}^{p}$	
0+	0	55	1600ª	-	-	
2 ₁ ⁺	606.6	2	6	170,000	$2^+ \rightarrow 0^+$	
4+	1030.0	0.04	0.1	3000	$4^+ \rightarrow 2^+$	
6+	1382.6	3.10-4	0.001	30	$6^+ \rightarrow 4^+$	
2 ₂ +	1568.4	0.06 ^b	0.2	5000 200	$2_{2}^{+} \rightarrow 2_{1}^{+}$ $2_{2}^{+} \rightarrow 0^{+}$	
2 ₃ +	2060.9	0.016 ^b	0.05	1400 50	$2_{3}^{+} \rightarrow 2_{1}^{+}$ $2_{2}^{+} \rightarrow 0^{+}$	

Precision measurement of first 2⁺ state : B(E2) and Q(2⁺) Evolution of collectivity with spin up to 6⁺ state Characterisation of all (collective) 2⁺ states up to ~ 2 MeV

Identification of the 2⁺ mixed-symmetry state

Example: ¹³⁶Te + ²⁰⁸Pb @ 540 MeV Need ~10⁴ counts in $2_2 \rightarrow 2_1$ to disentangle M1/E2 decay (2-10 UT) Ex.: angular distribution from 90° EXOGAM detectors

Collectivity in doubly-magic ¹³²Sn

Doubly magic nucleus ¹³²Sn is key for shell model calculations
≻ High lying 2⁺ state : E(2⁺) = 4041 keV
→ Very difficult experiment in low-energy Coulomb excitation

2⁺ state is **superposition of 2p-2h proton and neutron excitations ≻Enhanced B(E2)** value (as compared to neighbouring Sn isotopes)

Coulomb excitation of ¹³²Sn at HRIBF

Sample gamma-ray spectrum: • ¹³²Sn beam, doubly stripped ~30% of data - 96% pure Crystal gain matching & background - 1.3 x 10⁵ ions/s suppression not yet optimum D. Radford RNB6 (2003) - 3.75 & 3.56 MeV/nucleon ⁴⁸Ti 2⁺→0⁺ • ⁴⁸Ti target 983 keV; 1.2 barns • High γ efficiency BaF₂ array (~40%) 1000 • Two-week experiment • Fast γ–ion coincidences to suppress background 470 MeV $\theta_{\rm cm}$ < 110° 100 $B(E2; 0^+ \rightarrow 2^+) \sim 0.11(3) e^2 b^2$ 10 R.L. Varner et al., Eur. Phys. J. A25, 391 Yield published in ENAM 2005 proceedings 10 5 5.0 4.5 5.5 3.0 3.5 4.0 6.0 2.5B_c (MeV)

Day 2: Coulomb excitation of ¹³²Sn at SPIRAL2

SPIRAL2 "Day-1 intensities" : 1 x 10⁷ ions/s @ 4.5 MeV/u; ²⁰⁸Pb target $\sigma(2^+) \sim 3mb \& \sigma(3^-) > 5mb$ (from τ limit) $\rightarrow 1000$ cts in ~10UT will allow precise determination of π vs. γ contribution

AGATA 1π (ϵ ~5%@4 MeV) EXOGAM or PARIS 1-2 π

Conclusions

Proposed SPIRAL2 Day-1 Coulomb excitation experiments

>Te isotopes

- ¹³⁶Te (10⁷s⁻¹): full study of collectivity up to ~2 MeV
- ¹³⁸Te (10⁵s⁻¹): B(E2) and Q of first 2⁺ state
- ¹⁴⁰Te (10³s⁻¹): Energy and B(E2) of first 2⁺ state

>Sn isotopes (see also Loi of Lozeva et al.)

- ¹³²Sn (10⁷s⁻¹): B(E2; 0⁺ \rightarrow 2⁺) and B(E3; 0⁺ \rightarrow 3⁻)
- ¹³³Sn (6.10⁵s⁻¹): search for collective states 2⁺x nl_j

>Xe isotopes

- Study of octupole collectitvity beyond N=82
- $^{142}Xe/^{144}Xe (10^{7/5}s^{-1})$

>g-factor measurements after Coulomb excitation also possible through recoil-in-vacuum method (see Loi of Stuchberry et al.)

SPIRAL2 projected Day 1 intensities

lsotope	Half life		E _{nom} / A·MeV	I(E _{nom}) / pps	E _{min} / A·MeV	l(E _{min}) / pps	E _{max} / A∙MeV	I(E _{max}) / pps
79Zn	995	ms	6.2	2.1E+04	1.5	2.1E+04	12.3	2.0E+03
80Zn	545	ms	6.0	6.2E+03	1.5	6.4E+03	12.0	6.1E+02
86Kr	stbl		7.1	5.8E+08	1.8	5.7E+08	14.4	5.8E+07
87Kr	76.3	m	6.9	5.9E+08	1.7	5.9E+08	14.1	5.9E+07
88Kr	2.84	h	6.8	7.0E+08	1.7	7.0E+08	13.8	7.0E+07
89Kr	3.15	m	6.6	7.5E+08	1.6	7.5E+08	13.5	7.5E+07
90Kr	32.32	S	6.5	6.4E+08	1.6	6.4E+08	13.2	6.4E+07
91Kr	8.57	S	6.3	5.2E+08	1.6	5.2E+08	12.9	5.2E+07
92Kr	1.84	S	6.2	2.6E+08	1.5	2.7E+08	12.6	2.6E+07
93Kr	1.286	S	6.1	8.8E+07	1.5	8.9E+07	12.3	8.6E+06
94Kr	210	ms	5.9	1.2E+07	1.5	1.3E+07	12.1	1.1E+06
95Kr	114	ms	5.8	1.1E+06	1.4	1.3E+06	11.8	1.0E+05
96Kr	80	ms	5.7	1.1E+05	1.4	1.2E+05	11.6	9.2E+03
131Sn	56	S	5.1	8.2E+06	1.3	8.2E+06	9.7	8.2E+05
131Sn	58.4	S	5.1	3.0E+07	1.3	3.0E+07	9.7	3.0E+06
132Sn	39.7	S	5.0	1.8E+07	1.2	1.8E+07	9.6	1.8E+06
133Sn	1.45	S	4.9	6.3E+05	1.2	6.4E+05	9.4	6.2E+04
134Sn	1.12	S	4.8	5.9E+04	1.2	6.0E+04	9.3	5.8E+03
136Te	17.63	S	5.2	1.6E+07	1.3	1.6E+07	9.8	1.6E+06
135Xe	9.14	h	5.3	1.6E+09	1.3	1.6E+09	9.9	1.6E+08
135Xe	15.29	m	5.3	2.7E+08	1.3	2.7E+08	9.9	2.7E+07
136Xe	stbl		5.2	1.9E+09	1.3	1.9E+09	9.8	2.0E+08
137Xe	3.818	m	5.1	1.4E+09	1.3	1.4E+09	9.6	1.4E+08
138Xe	14.08	m	5.1	1.2E+09	1.3	1.2E+09	9.5	1.2E+08
139Xe	39.68	S	5.0	8.2E+08	1.2	8.2E+08	9.3	8.2E+07
140Xe	13.6	s	4.9	4.9E+08	1.2	4.9E+08	9.2	4.9E+07
141Xe	1.73	S	4.9	1.0E+08	1.2	1.0E+08	9.1	1.0E+07
142Xe	1.22	S	4.8	2.9E+07	1.2	2.9E+07	9.0	2.8E+06

ORNL:

1.3 10⁵ pps@3.7 MeV/u (96% pure)

2 10⁴ pps

Comparison of SPIRAL2 projected intensities

All intensities projected numbers, besides ORNL