Where I am coming from …

Irfu œ saclay

My hometown : Wuppertal

My first university : Bochum

My further studies : Heidelberg My postdoctoral years : Berkeley

Wolfram KORTEN $\qquad \qquad$ Ecole Joliot Curie – October 2012 $\qquad \qquad ^1$

My physics interest: nuclear spectroscopy

Irfu œ

Crystal Ball 1983-1989

162 NaI detectors

EUROBALL

1997-2002

HERA/NORDBALL 1989-1992

20 Ge detectors

EXOGAM since 2002

16x4 Ge

45 + 24x4 Ge

AGATA demonstrator since 2009

Coulomb excitation - a tool for nuclear shapes and more

- Introduction
- Theoretical aspects of Coulomb excitation
- Experimental considerations, set-ups and analysis techniques
- Recent highlights and future perspectives

Lecture given at the Ecole Joliot Curie 2012 Wolfram KORTEN (w.korten@cea.fr) CEA Saclay

Quadrupole deformation of nuclei

Oblate deformed nuclei are far less abundant than prolate nuclei Shape coexistence possible for certain regions of N & Z

œ

Coulomb excitation excites "collective" degrees of freedom (rotation, vibration) and, in principal, can map the shape of all atomic nuclei (ground and excited states)

Nuclear shapes and "deformation" parameters

Irfu Generic nuclear shapes can be described œ by a development of spherical harmonics $\overline{\text{sachy}}$

$$
R(t) = R_0 \left[1 + \sum_{\lambda} \sum_{\mu=-\lambda}^{+\lambda} a_{\lambda\mu}(t) Y_{\lambda\mu}(\vartheta, \varphi) \right]
$$

 $\alpha_{\lambda\mu}$: deformation parameters

Tetrahedral *Y32* deformation Triaxial *Y22* deformation

Nuclear shapes and electric multipole moments

Electric multipole moments can be expanded in terms of spherical harmonics $\rho(r)r^{\lambda}Y_{\lambda\mu}(\theta,\varphi)r^2drd\Omega$ 16π $2\lambda + 1$ $M(E \lambda, \mu) \equiv Q_{\lambda \mu} = \sqrt{\frac{2\lambda + 1}{4}} \left[\rho(r) r^{\lambda} Y_{\lambda \mu}(\theta, \varphi) r^2 \right]$ λμ R λ λ,

Using the deformation parameters $(\alpha_{\lambda\mu})$ for the the nuclear mass distribution 0

$$
R(t) = R_0 \left[1 + \sum_{\lambda} \sum_{\mu=-\lambda}^{+\lambda} a_{\lambda\mu}(t) Y_{\lambda\mu}(\mathcal{G}, \varphi) \right]
$$

For axially symmetric shapes ($\beta_{\lambda} = \alpha_{\lambda 0}$) and a homogenous density distribution ρ the quadrupole, octupole and hexadecupole moments $(\mathsf{Q}_2,\mathsf{Q}_3,\mathsf{Q}_4)$ become:

or axially symmetric shapes (
$$
\beta_{\lambda} = \alpha_{\lambda 0}
$$
) and a homogenous density distribution ρ
e quadrupole, octupole and hexadecupole moments (Q_2 , Q_3 , Q_4) become:

$$
Q_2 = \sqrt{\frac{3}{5\pi}} Z R_0^2 \mathcal{R}_2 + 0.360 \beta_2^2 + 0.336 \beta_3^2 + 0.328 \beta_4^2 + 0.967 \beta_2 \beta_4 + O(\beta^3) \mathcal{F} \left[m^2 \right]
$$

$$
Q_3 = \sqrt{\frac{3}{7\pi}} Z R_0^3 \mathcal{R}_3 + 0.841 \beta_2 \beta_3 + 0.769 \beta_3 \beta_4 + O(\beta^3) \mathcal{F} \left[m^3 \right]
$$

$$
Q_4 = \sqrt{\frac{1}{\pi}} Z R_0^4 \mathcal{R}_4 + 0.725 \beta_2^2 + 0.462 \beta_3^2 + 0.411 \beta_4^2 + 0.983 \beta_2 \beta_4 + O(\beta^3) \mathcal{F} \left[m^4 \right]
$$

$$
Q_1 = C_{LD} Z A \mathcal{R}_2 \beta_3 + 1.46 \beta_3 \beta_4 + O(\beta^3) \mathcal{F} \left[m \right]
$$

Irfu

cea

saclay

Coulomb excitation – an introduction

Rutherford scattering – some reminders

- Elastic scattering of charged particles (point-like \rightarrow monopoles) under the influence of the Coulomb field $F_C = Z_1 Z_2 e^{2/r^2}$ with $r(t) = |r_1(t) - r_2(t)|$ \rightarrow hyperbolic relative motion of the reaction partners
- Rutherford cross section $d\sigma/d\theta = Z_1 Z_2 e^2/E_{cm}^2 \sin^4(\theta_{cm}/2)$

valid as long as
$$
E_{cm} = m_0 v^2 = \frac{m_P \cdot m_T}{m_P + m_T} v^2 \ll V_c = Z_1 Z_2 e^2 / R_{int}
$$

Validity of classical Coulomb trajectories

Sommerfeld parameter

Irfu

 η >> 1 requirement for a semi classical treatment of equations of motion \triangleright measures the strength of the monopole-monopole interaction \triangleright equivalent to the number of exchanged photons needed to force the nuclei on a hyperbolic orbit 1 v a $Z_{\rm P}Z_{\rm T}$ e η 2 $P^{\ell}T$ λ \hbar

Coulomb trajectories – some more definitions

Principal assumption η >>1 \rightarrow classical description of the relative motion of the center-of-mass of the two nuclei \rightarrow hyperbolic trajectories

$$
\triangleright \text{ distance of closest approach (for w=0):} \quad D(\theta_{cm}) = a(1+\epsilon) = a \left[1 + \sin \left(\frac{\theta_{cm}}{2} \right)^{-1} \right]
$$
\n
$$
\triangleright \text{ impact parameter:} \qquad b = \sqrt{D^2 - 2aD} = a \cdot \cot \left(\frac{\theta_{cm}}{2} \right)
$$
\n
$$
\triangleright \text{angular momentum:} \qquad L = \hbar \eta \sqrt{\epsilon^2 - 1} = \hbar \eta \cot \left(\frac{\theta_{cm}}{2} \right)
$$

 \overline{a}

Coulomb excitation – some basics

Irfu cea

saclay

Nuclear excitation by the electromagnetic interaction acting between two colliding nuclei.

Coulomb trajectories only if the colliding nuclei do not reach the "Coulomb barrier" → purely electromagnetic process, no nuclear interaction, calculable with high precision

"Safe" energy requirement

- Rutherford scattering only if the distance of closest approach is large compared to nuclear radii + surfaces: "Classical" approach using the liquid-drop model $D_{\text{min}} \ge r_s = [1.25 (A_1^{1/3} + A_2^{1/3}) + 5]$ fm
- More realistic approximation using the half-density radius of a Fermi mass distribution of the nucleus : $C_i = R_i(1 - R_i^{-2})$ with R = 1.28 A^{1/3} - 0.76 + 0.8 A^{-1/3} \triangleright D_{min} \geq r_s = [C₁ + C₂ + S] fm

"Safe" energy requirement

Empirical data on surface distance S as function of half-density radii C_i require distance of closest approach S > 5 - 8 fm

- \rightarrow choose adequate beam energy (D > D_{min} for all θ) low-energy Coulomb excitation
- \rightarrow limit scattering angle, i.e. select impact parameter b > D_{min}, high-energy Coulomb excitation

Coulomb excitation – the principal process

Inelastic scattering: kinetic energy is transformed into nuclear excitation energy e.g. rotation vibration

Excitation probability (or cross section) is a measure of the collectivity of the nuclear state of interest \rightarrow complementary to, e.g., transfer reactions

Coulomb excitation – "sudden impact"

Irfu

œ

Excitation occurs only if nuclear time scale is long compared to the collision time: saclay "sudden impact" if $\tau_{\text{nucl}} >> \tau_{\text{coll}} \sim a/v \approx 10$ fm / 0.1c $\approx 2\text{-}3\cdot 10^{-22}$ s $\tau_{\text{coll}} \sim \tau_{\text{nucle}} \sim \hbar/\Delta E \rightarrow$ adiabatic limit for (single-step) excitations

$$
\xi = \frac{\Delta E}{\hbar} \cdot \tau_{\text{coll}} = \frac{\Delta E}{\hbar} \frac{a}{v_{\infty}} = \frac{Z_1 Z_2 e^2}{\hbar} \left(\frac{1}{v_f} - \frac{1}{v_i} \right)
$$

: adiabacity paramater sometimes also $\xi(\theta)$ with D(θ) instead of a

$$
\Rightarrow \Delta E_{\text{max}}(\xi = 1) = \frac{\hbar v_{\infty}}{a}
$$

Limitation in the excitation energy ΔE for single-step excitations in particular for low-energy reactions (v<c)

Coulomb excitation – first conclusions

Irfu

CAD

Maximal transferable excitation energy and spin in heavy-ion collisions

Summary I

saclay

Irfu

- Coulomb excitation is a purely electro-magnetic excitation process of nuclear states due to the Coulomb field of two colliding nuclei.
- Coulomb excitation is a very precise tool to measure the collectivity of nuclear excitations and in particular nuclear shapes.
- Coulomb excitation appears in all nuclear reactions (at least in the incoming channel) and can lead to doorway states for other excitations.
- Pure electro-magnetic interaction (which can be readily calculated without the knowledge of optical potentials etc.) requires "safe" distance between the partners at all times.

Transition rates and cross sections in Coulomb excitation

Coulomb excitation theory - the general approach Irfu *b* Œ projectile $r(t)$ target r (w) = a (ε sinh w + 1) saclay t (w) = a/v_a (ϵ cosh w + w) $a = Z_p Z_t e^2 E^{-1}$ Solving the time-dependent Schrödinger equation: $i\hbar$ d ψ (**t**)/d**t** = [H_P + H_T + V (r(**t**))] ψ (**t**) with H_{PT} being the free Hamiltonian of the projectile/target nucleus and V(t) being the time-dependent electromagnetic interaction (remark: often only target or projectil excitation are treated) Expanding $\psi(t) = \sum_n a_n(t) \phi_n$ with ϕ_n as the eigenstates of H_{P/T} leads to a set of coupled equations for the time-dependent excitation amplitudes $a_n(t)$ **iħ daⁿ (t)/dt = ^m ⁿ |V(t)| ^m exp[i/ħ (En-Em) t] am(t)** The transition amplitude b_{nm} are calculated by the (action) integral **bnm= iħ-1 aⁿ ⁿ |V(t)| a^m ^m exp[i/ħ (En-Em) t] dt** Finally leading to the excitation probability $P(I_n \rightarrow I_m) = (2I_n + 1)^{-1}b_{nm}$ ²

Coulomb excitation theory - the general approach

The coupled equations for $a_n(t)$ are usually solved by a multipole expansion of the electromagnetic interaction V(r(t))

 $V_{P-T}(r) = Z_T Z_P e^2$ + $\sum_{\lambda\mu}$ $V_P(E\lambda,\mu)$ + $\sum_{\lambda\mu} V_T(E\lambda,\mu)$ $+ \sum_{\lambda\mu} V_{\text{P}}$ + $\sum_{\lambda\mu}^{\text{opt}}$ V_T

Irfu

cea

saclay

monopole-monopole (Rutherford) term electric multipole-monopole target excitation, electric multipole-monopole project. excitation, magnetic multipole project./target excitation (but small at low v/c) $+ O(\sigma \lambda, \sigma' \lambda' > 0)$ higher order multipole-multipole terms (small)

 $V_{\mathsf{P}/\mathsf{T}}(\mathrm{E}\lambda,\mu) = (-1)^{\mu}\, \mathsf{Z}_{\mathsf{T}/\mathsf{P}}\mathsf{e}\,4\pi/(2\lambda+1)\,\, \mathsf{r}^{-(\lambda+1)}\mathsf{Y}_{\lambda\mu}(\theta,\phi)\cdot \mathsf{M}_{\mathsf{P}/\mathsf{T}}(2\lambda+1)$ $\mathsf{V}_{\mathsf{P}/\mathsf{T}}(\mathrm{M}\lambda,\mu)=(-1)^{\mu}\mathsf{Z}_{\mathsf{T}/\mathsf{P}}$ e 4 π /(2 λ +1) i/c λ r^{–(λ +1)}dr/dtLY $_{\lambda,\mu}(\theta,\phi)\cdot\mathsf{M}_{\mathsf{P}/\mathsf{T}}(\theta,\mu)$ electric multipole moment: $M(E\lambda,\mu) = \int \rho(r') r'^\lambda Y_{\lambda,\mu}(r') d^3r'$ magnetic multipole moment:

 $M(M\lambda,\mu) = -i/c(\lambda+1) \int j(r') r'^{\dagger} (ir \times \nabla) Y_{\lambda,\mu}(r') d^3r'$

→ Coulomb excitation cross section is sensitive to electric multipole moments of all orders, while angular correlations give also access to magnetic moments

Transition rates in the Coulomb excitation process Irfu • **1 st order perturbation theory** saclay \rightarrow Transition probability for multipolarity λ $P_{i\to f}^{(1)}(\mathcal{G},\xi) = |\chi_{i\to f}^{(\lambda)}(\mathcal{G},\xi)|^2 = |\chi_{i\to f}^{(\lambda)}|^2 R_{\lambda}^2(\mathcal{G},\xi)$ (1) (λ) ($\Omega \geq 2$ (λ) $\vert 2 \vert$ $\mathbf{1}_{i\to f}(\mathbf{v}, \mathbf{v}) - |\chi_{i\to f}|$
 $\chi_{i\to f}^{\lambda} = \frac{\sqrt{16\pi}(\lambda - 1)!}{(28.4 \lambda)!}$ $i \rightarrow f$ $i \rightarrow f$ $i \rightarrow f$ $\frac{16\pi(\lambda-1)!}{(2\lambda+1)!!}\left(\frac{Z_{T/P}e}{\hbar v_i}\right)$ $\frac{i | M(E\lambda)| f}{a^{\lambda} \sqrt{2I_i + 1}}$ **Strength** $\lambda = \frac{\sqrt{10\mu(\lambda - 1)}}{\sqrt{T}}$ $i\rightarrow f$ $\overline{\hspace{1cm}}$ $(2\lambda+1)!!$ $\overline{\hspace{1cm}}$ $\overline{\hspace{1cm}}$ λ parameter v i i $R_{\lambda}^{2}(\mathcal{G},\xi)=\sum |R_{\lambda\mu}(\mathcal{G},\xi)|^{2}$ Orbital integrals 2 $Z_1Z_2e^2$ | 1 1 $1 - 2$ Adiabacity parameter ξ $=$ ξ $\overline{}$ $\frac{1}{\hbar}$ $\frac{1}{\hbar}$ v v f V_i

applicable if only one state is excited, e.g. $0^+ \rightarrow 2^+$ excitation, and for small interaction strength $\chi^{(\lambda)}$, e.g. semi magic nuclei

Cross section for Coulomb excitation

Angular distribution functions for different multipolarities

Total cross sections for different multipolarities

Irfu saclay

Transition rates in the Coulomb excitation process

• **Second order perturbation theory**

becomes necessary if several states can be excited from the ground state or when multiple excitations are possible i.e. for larger excitation probabilities

→ 2nd order transition probability for multipolarity λ

\n
$$
P_{i\to f}^{(2)}(\mathcal{G},\xi) = (2I_i + 1)^{-1} \sum_{m_im_f} |b_{if}^{(2)}|^2 \text{ with } b_{if}^{(2)} = b_{if}^{(1)} + \sum_n b_{inf}
$$

Irfu cea saclay

Application to double-step (E2) excitations

- Double-step excitations are important if $\chi_{if} \ll \chi_{in} \chi_{nf} \rightarrow P^{(22)} > P^{(12)}$
- \triangleright 0⁺ states can only be excited via an intermediate 2⁺ state ($\chi_{if} = 0$)
	- \rightarrow P⁽²⁾ = $|\chi_{0\rightarrow 2}|^2 |\chi_{2\rightarrow 0}|^2 \pi_0(\theta, s, \xi)$ with $\pi_0(\theta, s, \xi) = 25/4$ ($|R_{20}|^2 + |G_{20}|^2$) with $\xi = \xi_1 + \xi_2$ and s= $\xi_1/(\xi_1 + \xi_2)$ $P^{(2)} (\theta = \pi, \xi_1 = \xi_2 \rightarrow 0) \approx 5/4 |\chi_{0 \rightarrow 2}|^2 |\chi_{2 \rightarrow 0}|^2$
- \triangleright 4⁺ states are usually excited through a double-step E2 since the direct E4 excitation is small
	- \rightarrow P⁽²⁾ = $|\chi_{0\rightarrow 2}|^2 |\chi_{2\rightarrow 4}|^2 \pi_4(\theta, s, \xi)$ with $\pi_4(\theta, s, \xi) = 25/4$ ($|R_{24}|^2 + |G_{24}|^2$) $P^{(2)} (\theta = \pi, \xi_1 = \xi_2 \rightarrow 0) \approx 5/14 |\chi_{0 \rightarrow 2}|^2 |\chi_{2 \rightarrow 4}|^2$

Wolfram KORTEN **Ecole Joliot Curie – October 2012** 37

The reorientation effect

• **Specific case of second order perturbation theory** saclay where the "intermediate" states are the m substates of the state of interest \rightarrow 2nd order excitation probability for 2⁺ state

Irfu

Multi-step Coulomb excitation

Quadrupole deformation of nuclear ground states

Irfu Œ saclay

Coulomb excitation can, in principal, map the shape of all atomic nuclei: → Quadrupole (and higher-order multipole moments) of I>½ states

Nuclear deformation and quadrupole sum rules

Irfu œ saclay

Model-independent method to determine $\mathcal{M}(E2,\mu=0)=Q\cos\delta$ charge distribution parameters (Q, δ) from $\mathcal{M}(E2, \mu = \pm 1) = 0$ a (full) set of E2 matrix elements $\mathcal{M}(E2,\mu=\pm 2)=\frac{1}{\sqrt{2}}Q\sin\delta$

$$
\langle s|[E2 \times E2]_0|s \rangle = \frac{1}{\sqrt{5}}Q^2 + \frac{(-1)^{2s}}{\sqrt{2s+1}} \sum_t \langle s|[E2||t\rangle\langle t]|E2||s\rangle \left\{\n\begin{array}{ccc}\n2 & 2 & 0 \\
s & s & t\n\end{array}\n\right\}
$$
\n
$$
\langle s|[[E2 \times E2]_2 \times E2]_0|s \rangle = \underbrace{-\sqrt{\frac{2}{35}}Q^3 \cos(3\delta)}_{2s} = \frac{1}{2s+1} \sum_{t_1} \langle s||E2||t\rangle\langle t||E2||u\rangle\langle u||E2||s\rangle \left\{\n\begin{array}{ccc}\n2 & 2 & 2 \\
s & t & u\n\end{array}\n\right\}
$$

 \rightarrow ground state shape can be determined by a full set of E2 matrix elements i.e. linking the ground state to all collective 2⁺ states

Summary II

- Irfu saclay
- Coulomb excitation probability $P(I^{\pi})$ increases with increasing strength parameter (χ) , i.e. $Z_{P/T}$, $B(\sigma \lambda)$, 1/D, θ_{cm} decreasing adiabacity parameter (ξ), i.e. ΔE , a/v_{oo}
- Differential cross sections $d\sigma(\theta)/d\Omega$ show varying maxima depending on multipolarity λ and adiabacity parameter ξ → allows to distinguish different multipolarities (E2/M1, E2/E4 etc.)
- Total cross section σ_{tot} decreases with increasing adiabacity parameter ξ and multipolarity λ is generally smaller for magnetic than for electric transitions

• 2nd order effects

lead to "virtual" excitations influencing the real excitation probabilities allow to excite 0⁺ states and to measure static moments