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Where I am coming from … 
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My hometown : Wuppertal 

My further studies : Heidelberg My postdoctoral years : Berkeley 

My first university : Bochum 
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My physics interest: nuclear spectroscopy 
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Crystal Ball 
1983-1989 

HERA/NORDBALL 
1989-1992 

20 Ge detectors 

EUROGAM 
1992-1996 

45 +  24x4  Ge 

EUROBALL 
1997-2002 

45 + 26x4+ 15x7 Ge  

162 NaI detectors 

EXOGAM 
since 2002 

Ge 16x4 

AGATA  
demonstrator since 2009 

60x3 segm. 

Ge detectors 
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Coulomb excitation  - a tool  
for nuclear shapes and more 

• Introduction  

• Theoretical aspects of Coulomb excitation 

• Experimental considerations, set-ups and 
analysis techniques 

• Recent highlights and future perspectives   

Lecture given at the  

Ecole Joliot Curie 2012 

Wolfram KORTEN (w.korten@cea.fr) 

CEA Saclay 
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Quadrupole deformation of nuclei 

M. Girod, CEA 
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Quadrupole deformation of nuclei 

M. Girod, CEA 

N=Z 

Oblate deformed nuclei are far less abundant than prolate nuclei 
Shape coexistence possible for certain regions of N & Z 

Prolate 

Oblate Pb & Bi 

N~Z 

Fission 

fragments 
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Quadrupole deformation of nuclei 

M. Girod, CEA 

Coulomb excitation excites “collective” degrees of freedom (rotation, vibration)  

and, in principal, can map the shape of all atomic nuclei (ground and excited states) 
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Nuclear shapes and “deformation” parameters 
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Nuclear shapes and electric multipole moments 

Electric multipole moments can be expanded in terms of spherical harmonics  

 

 

Using the deformation parameters for the the nuclear mass distribution 

 

 

For axially symmetric shapes (  and a homogenous density distribution 
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Coulomb excitation – an introduction 

Ecole Joliot Curie – October 2012  
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Rutherford scattering – some reminders 

• Elastic scattering of charged particles (point-like  
monopoles) under the influence of the Coulomb field 

 FC = Z1Z2e
2/r2 with r(t) = |r1(t) – r2(t)| 

  hyperbolic relative motion of the reaction partners  

 

• Rutherford cross section 

 d /d Z1Z2e
2/Ecm
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He 

O 

Pb 

Ar 

Validity of classical Coulomb trajectories 

b=0 

projectile target 

Sommerfeld parameter  

 

 

 >> 1 requirement for a semi classical 

treatment of equations of motion 

 measures the strength of the     

monopole-monopole interaction 
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Coulomb trajectories – some more definitions 

 

 distance of closest approach (for w=0): 

 impact parameter: 

 angular momentum :  

Principal assumption >>1  classical description of the relative motion  

of the center-of-mass of the two nuclei  hyperbolic trajectories  

r (w) = a     ( sinh w + 1) 

t (w) = a/v  ( cosh w + w) 

           a = Zp Zt e
2 E-1 

2
cot12 cmL 

 
2

θ
sin1a  ) ε(1a  )(θ D

1

cm
cm

2

θ
cot a   2aD- D  b cm2

b 

projectile 

target 

D( ) 

 

Ecole Joliot Curie – October 2012  



Wolfram KORTEN 16 

Coulomb excitation – some basics 

Nuclear excitation by the electromagnetic interaction  

acting between two colliding nuclei. 

b 

projectile 

target 

Target and projectile excitation possible 

often heavy, magic nucleus (e.g. 208Pb) 

 as projectile  target Coulomb excitation 

 as target  projectile Coulomb excitation 

(important technique for radioactive beams) 

small impact parameter 

 back scattering 

 close approach 

 strong EM field 

large impact parameter 

 forward scattering 

 large distance 

 weak EM field 

Coulomb trajectories only if the colliding nuclei do not reach the “Coulomb barrier”  

purely electromagnetic process, no nuclear interaction, calculable with high precision 

Ecole Joliot Curie – October 2012  
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„Safe“ energy requirement 

• Rutherford scattering only if the distance of closest 
approach is large compared to nuclear radii + surfaces: 

 „Classical“ approach using the liquid-drop model 

   Dmin  rs = [1.25 (A1
1/3 + A2

1/3) + 5] fm 

 

• More realistic approximation using the half-density radius 
of a Fermi mass distribution of the nucleus :  

 Ci = Ri(1-Ri
-2) with R = 1.28 A1/3 - 0.76 + 0.8 A-1/3 

    Dmin  rs = [ C1 + C2 + S ] fm 

b 

projectile 

target 

Dmin 

 
Ecm[MeV] =

ZPZTe2

Dmin[ fm]
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Empirical data on surface distance S as function of half-density radii Ci 

require distance of closest approach S > 5 - 8 fm  

 choose adequate beam energy (D > Dmin for all )  

     low-energy Coulomb excitation 

 limit scattering angle, i.e. select impact parameter b > Dmin, 

     high-energy Coulomb excitation 

„Safe“ energy requirement 
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Coulomb excitation – the principal process 
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Inelastic scattering: kinetic energy is transformed into nuclear excitation energy  

e.g.  rotation       vibration 

Excitation probability (or 

cross section) is a measure 

of the collectivity of the 

nuclear state of interest 

 complementary to, e.g., 

transfer reactions 
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Coulomb excitation – “sudden impact” 

Excitation occurs only if nuclear time scale is long compared to the collision time: 

„sudden impact“ if nucl >>  coll ~ a/v  10 fm / 0.1c  2-3 10-22 s 

coll ~ nucl ~ ћ/ E adiabatic limit for (single-step) excitations 
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: adiabacity paramater  

    sometimes also ( ) with D( ) instead of a 

a

 v
1)(ξΔEmax

 Limitation in the excitation energy E  

for single-step excitations in particular  

for low-energy reactions (v<c) 
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Coulomb excitation – first conclusions 

Maximal transferable excitation energy and spin in heavy-ion collisions 
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Summary I 

• Coulomb excitation is a purely electro-magnetic excitation 

process of nuclear states due to the Coulomb field of two 

colliding nuclei. 

• Coulomb excitation is a very precise tool to measure the 

collectivity of nuclear excitations  and in particular nuclear 

shapes. 

• Coulomb excitation appears in all nuclear reactions (at 

least in the incoming channel) and can lead to doorway 

states for other excitations. 

• Pure electro-magnetic interaction (which can be readily 

calculated without the knowledge of optical potentials etc.) 

requires “safe” distance between the partners at all times. 

Ecole Joliot Curie – October 2012  
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Transition rates and cross sections 
in Coulomb excitation  

Ecole Joliot Curie – October 2012  
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Coulomb excitation theory - the general approach 

  Solving the time-dependent Schrödinger equation: 

  iħ d (t)/dt = [HP + HT + V (r(t))] (t) 
  with HP/T being the free Hamiltonian of the projectile/target nucleus 

  and V(t) being the time-dependent electromagnetic interaction 

  (remark: often only target or projectil excitation are treated)  

 

  Expanding (t) = n an(t) n with  n as the eigenstates of HP/T 

  leads to a set of coupled equations for the  

  time-dependent excitation amplitudes an(t) 

  iħ dan(t)/dt = m n|V(t)| m  exp[i/ħ (En-Em) t] am(t) 
  

  The transition amplitude bnm are calculated by the (action) integral 

  bnm= iħ
-1  an n|V(t)| am m  exp[i/ħ (En-Em) t] dt  

 

  Finally leading to the excitation probability 

  P(In Im) = (2In+1)
-1bnm

2 

b 

projectile 
r(t) target r (w) = a     ( sinh w + 1) 

t (w) = a/v  ( cosh w + w) 

           a = Zp Zt e
2 E-1 
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Coulomb excitation theory - the general approach 

 The coupled equations for an(t) are usually solved by a multipole expansion  

 of the electromagnetic interaction V(r(t)) 

  

 VP-T(r) = ZTZPe2/r  monopole-monopole (Rutherford) term   

     + VP( )   electric multipole-monopole target excitation,  

     + VT( )   electric multipole-monopole project. excitation,  

     + VP( )   magnetic multipole project./target excitation 
    + VT( )  (but small at low v/c) 

     + O( ’ ’>0) higher order multipole-multipole terms (small) 

 

  VP/T( ) = ZT/Pe /(2 r–( +1)Y ( , ) · MP/T(  

  VP/T( ) = ZT/Pe /(2 +1) i/c r–( +1)dr/dtLY ( , ) · MP/T(  

  electric multipole moment:   

   M(E  (r‘) r‘  Y (r‘) d3r‘ 

  magnetic multipole moment:  

   M(M -i/c(  j(r‘) r‘l (ir )Y (r‘) d3r‘ 

 

 Coulomb excitation cross section is sensitive to electric multipole moments  

 of all orders, while angular correlations give also access to magnetic moments 
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Transition rates in the Coulomb excitation process 

• 1st order perturbation theory 

  Transition probability for multipolarity

    applicable if only one state is excited, e.g. 0+ 2+ excitation, 

 and for small interaction strength ( ), e.g. semi magic nuclei 
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Strength parameter E2 as function of (Zp,ZT) 
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Orbital integrals R(E2) as function of  and  
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Cross section for Coulomb excitation 
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Angular distribution functions for different multipolarities 
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Total cross sections for different multipolarities 
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B( ) values for single particle  

like transitions (W.u.): 

Bsp( ) =  (2 +1) 9e2/4

R2 x 10(ħc/MpR0)
2 

 

B( ) [e2b ] 208Pb 

E1: 6.45 10-4 A2/3 2.3 10-2 

E2: 5.94 10-6 A4/3 7.3 10-3 

E3: 5.94 10-8 A2 2.6 10-3 

E4: 6.28 10-10A8/3 9.5 10-4 

M1: 1.79 

M2: 0.0594 A2/3 2.08 

fE ( ) fM ( ) 
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• Second order perturbation theory 

 becomes necessary if several states can be excited from 

the ground state or when multiple excitations are possible 

 i.e. for larger excitation probabilities 

  2nd order transition probability for multipolarity

Transition rates in the Coulomb excitation process 
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Application to double-step (E2) excitations 

• Double-step excitations are important if if << in nf  P(22) > P(12) 

 

 0+ states can only be excited via an intermediate 2+ state ( if = 0) 

   P(2) = | 0 2|
2 | 2 0|

2 ,s, ) with ,s, ) = 25/4 (|R20|
2+|G20|

2) 

        with  = 1+ 2 and s= 1/( 1+ 2) 
  P(2) ( 1= 2 0)  5/4 | 0 2|

2 | 2 0|
2 

 

 4+ states are usually excited through a double-step E2 since the 
direct E4 excitation is small 

   P(2) = | 0 2|
2 | 2 4|

2 ,s, ) with ,s, ) = 25/4 (|R24|
2+|G24|

2) 
  P(2) ( 1= 2  0)  5/14 | 0 2|

2 | 2 4|
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The reorientation effect 

• Specific case of second order perturbation theory 

 where the „intermediate“ states are the m substates of the 

 state of interest   2nd order excitation probability for 2+ state
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Strength of the reorientation effect 
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sensitive to diagonal matrix elements 

 intrinsic properties of final state: 

quadrupole moment including sign 
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Multi-step Coulomb excitation 

q = 45/16 0 2 

Possible if  >> 1 (no perturbative treatment) 

 

Example : Rotational band in a strongly  

deformed nucleus: 
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Quadrupole deformation of nuclear ground states 

Coulomb excitation can, in principal, map the shape of all atomic nuclei: 

 Quadrupole (and higher-order multipole moments) of I>½ states 

M. Girod, CEA 
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Nuclear deformation and quadrupole sum rules 
Model-independent method to determine 

charge distribution parameters (Q, from 

a (full) set of E2 matrix elements 

01 
+ 

23 
+ 

22 
+ 

21 
+ 

ground state shape can be determined by a full set of E2 matrix elements    

    i.e. linking the ground state to all collective 2+ states 

~ Q2 ~ Q3 cos3



Wolfram KORTEN 43 Ecole Joliot Curie – October 2012  

Summary II 
• Coulomb excitation probability P(I ) increases with 

 increasing strength parameter ( ),  i.e. ZP/T, ), 1/D, cm  

 decreasing adiabacity parameter ( ), i.e. E, a/v  

 

• Differential cross sections d /d show 

 varying maxima depending on multipolarity  and adiabacity parameter  

  allows to distinguish different multipolarities (E2/M1, E2/E4 etc.) 

 

• Total cross section tot decreases 

 with increasing adiabacity parameter  and multipolarity   

 is generally smaller for magnetic than for electric transitions  

 

• 2nd order effects 

 lead to “virtual” excitations influencing the real excitation probabilities 

 allow to excite 0+ states and to measure static moments  


