

Coulomb excitation - a tool for nuclear shapes and more

- Introduction
- Theoretical aspects of Coulomb excitation
- Experimental considerations, set-ups and analysis techniques
- Recent highlights and future perspectives

Lecture given at the Ecole Joliot Curie 2012 Wolfram KORTEN CEA Saclay

	Coulomb excitation - the different energy regimes						
Irfu CCC saclay		Low-energy regime (< 5 MeV/u)		High-energy regime (>>5 MeV/u)			
	Energy cut-off	$\Delta E_{max} = -$	$\frac{\hbar v_{\infty}}{a \varepsilon} \approx 2 \mathrm{MeV}$	$\Delta E_{max} =$	$=\hbar c \frac{\beta \gamma}{a \varepsilon}$	$\approx 10 \text{MeV}(\beta = 0.4)$	
	Spin cut-off:	L _{max} :	up to 30ħ		mainly s	ingle-step excitations	
	Cross section:	$d\sigma/d\theta \sim \langle I_i M(\sigma \lambda) I_f \rangle$ differential			$σ_λ$ ~ (Z _p e ² /ħc) ² B(σλ, 0→λ) integral		
	Luminosity: Beam intensity	low : high	mg/cm ² targets >10 ³ pps		<mark>high</mark> Iow	g/cm ² targets a few pps	
		Comprel low-lyin	hensive study of g exitations	Fi st	First exploration of excited states in very "exotic" nuclei		

Coulomb excitation with stable beams

Irfu CEC saclay

Early experimental approach, until ~1970: light ion beams (p,α ,¹²C,¹⁶O, ...) Particle spectroscopy using spectrometers or Si detectors

Method limited to light beams (α , ¹²C, ¹⁶O, ²⁰Ne) since energy resolution scales with mass (E/A~const.)

Coulomb excitation with stable beams

Irfu CCCI saclay

1970/80: Particle-gamma coincidence spectroscopy using Nal and/or Ge detector arrays in conjunction with charged particle detectors

Advantages: high resolution (few keV with Ge detectors) combined with high efficiency (close to 100% with Nal arrays)

Disadvantages :

Energy resolution limited by Doppler effect

➔ high granularity for detection of both particle and gamma rays

Need to detect particle-gamma coincidences

→ 4π arrays or reduced (coincidence) efficiency

Indirect measurement $Y_{\gamma}(I_i \rightarrow I_f) \rightarrow \sigma(I_i, \theta_{cm})$

 \rightarrow need to take into account branching ratios, particle- γ angular distribution,

→ corrections needed for efficiencies, etc.

Experimental setup for multi-step Coulomb excitation experiments with stable beams

Advantage: 4π array for both particles and γ rays ; good spatial resolution (few °) Identification of reaction partners through Time-of-Flight Limitation: low resolution for Nal scintillators, low efficiency for Ge detectors (~0.5%) due to large distance (~25cm)

Wolfram KORTEN

Ecole Joliot Curie – October 2012

Irfu CCC saclay

Example for a multi-step Coulomb excitation experiment with a stable heavy ion beam

ex.: 90 Zr + 232 Th @ 396 MeV (4.44 MeV/u) backward angle scattering ($\theta > 100^{\circ}$) \rightarrow favours multi-step excitation (I~20ħ) and higher lying states (β , γ , oct. vibration)

Excellent energy resolution (4keV@1MeV) but low Ge-Ge coincidence efficiency

Nal-Ge concidences and γ -ray multiplicity still allow to disentangle the level scheme

Multiple rotational band structure in ²³²Th

Multiple rotational band structure in ²³²Th

Multiple "vibrational" bands incl. inter-band $B(\sigma\lambda)$ and intra-band B(E2) values (rotational model assumptions within the bands)

Wolfram KORTEN

œ

Ecole Joliot Curie – October 2012

4π HPGe arrays with charged particle detectors

From ~1995: Ex. Chico 4π PPAC array (Univ. Rochester) and Gammasphere

M.W.Simon, D. Cline, C.Y. Wu et al., Nucl. Inst. Meth. A452 (2000) 205

lrfu

(A)

saclay

Performance of Chico PPAC

Some results from Chico and Gammasphere

saclay

Experimental results from Coulomb excitation

- Need to deduce:
- Velocity vectors of recoiling ions (eventually also masses and reaction Q-value)
 - Correct for Doppler shift of de-excitation γ-rays on an event-by-event basis
 - Identify γ -rays which were emitted by each recoiling ion on an event-by-event basis
 - Normalize projectile yields using an accurately known B(E2): target or low-lying state
 - Determine Coulomb excitation cross sections to excited states as function of impact parameter.
 - Use computer codes to extract individual electromagnetic matrix elements from measured yields for both target and projectile excitation.

Expected results

- Observation of (new) excited states, in particular (higher lying) collective states (2₁⁺ 4₁⁺ 2₂⁺, ...)
- **B(E2)** and **B(M1)** values between (all) low-lying states, eventually also higher $B(E\lambda)$ values
- Sign and magnitude of static E2 moments of excited states
- Signs and magnitudes of observable products of $E\lambda$ matrix elements
- M1 moments of excited states may be obtained from the measured attenuation of the γ-ray angular correlations for ions recoiling in vacuum

Rochester - Warsaw GOSIA computer code

I) Excitation stage:

- 1) Semi-classical approximation and pure electromagnetic interaction
 - > max. 5% deviation from full quantal calculation at η ~30
- 2) Classical hyperbolic trajectories
 - ➤ symmetrised in energy : $v_{\infty} \rightarrow \frac{1}{2}(v_i + v_f)$
 - atomic screening, vacuum polarization, relativistic effects ignored
 change in distance of closest approach <0.2%
- 3) Virtual excitation of unobserved states
 - Include higher lying (unobserved) states
 - Include Giant E1 Resonance through dipole polarisation term (12%)
- 4) Mutual excitation of colliding nuclei
 - Monopole-multipole interaction of either the target or projectile
 multipole-multipole correction very small (0.05% in mass-70)
 - Mutual excitation explicitly treated in new code (Gosia2)
- 5) Particle solid angle and target thickness
 - Numerical integration over solid angle of particle detectors and energy loss in the target
 - ➔ excitation probability and statistical tensor for ALL excited states

Rochester - Warsaw GOSIA computer code

II) Decay stage:

lrfu

œ

saclay

- 1) Use statistical tensors calculated in the excitation stage
 - Information on excitation probability and initial sub-state population
- 2) Include cascade feeding from higher-lying states
- 3) Include deorientation of the angular distribution (due to recoil in vacuum)
 - two-state model by Brenn and Spehl to model hyperfine interactions
- 4) Include Relativistic transformation of solid angles
- 5) Include solid angle of gamma-ray detectors
 - Simplified (cylindrical) detector geometry with attenuation factors
- 6) Possibility to include in-flight decays for long-lived states
- → calculate gamma ray yields for all possible transitions

Lifetimes, branching and mixing ratios from independent sources can be added as additional constraints

Rochester - Warsaw GOSIA computer code

Irfu CCCI saclay

GOSIA is a semi-classical coupled-channel Coulomb excitation code using a two-stage approach and a least-squares search to reproduce experimentally observed gamma-ray intensities

Coulomb excitation studies using radioactive beams

lrfu

œ

Production and reacceleration schemes for ISOL beams at different facilities

saclay GANIL/SPIRAL: Heavy Ion beam (50-100 MeV/u) & Cyclotron (3-20 MeV/u)

ISOLDE/REX: Proton beam (1.4 GeV, 3.10¹³/pulse) & HI Linac (3 MeV/u)

TRIUMF/ISAC: Proton beam (500 MeV, 0.1 mA) & HI Linac (2/5 MeV/u)

ORNL/HRIBF: Low-energy proton induced fission & Tandem (2-5 MeV/u)

Principal differences in

production preparation availability acceleration

- \rightarrow fragmentation, spallation, fission
- \rightarrow extraction, selection, ionisation
- → elements & mass range, purity
- → beam energy & possible reactions

"Ideal" ISOL facility does not yet exist, soon SPIRAL2, HIE-ISOLDE, ISAC2 Highest yields over largest part of the nuclear chart (not only fission fragm.) Largest variety and best purity of beams with well-defined beam energy

Experimental considerations for RIB experiments

Principle

٠

lrfu

- **Scattering of a (radioactive) ion beam on a (high-Z) target at "safe" energy**
 - Choice of target depends (mainly) on available beam energy and state(s) of interest

Experimental Method:

- Use thin targets so that excited nuclei (and the unscattered beam) recoil in vacuum
- Measure scattering angles and velocities of recoiling ions over a wide range of scattering angles
- Detect deexcitation γ-rays in coincidence with the scattered ions

Principal difficulties

- Background from radioactive decay of beam particles (Rutherford)
- Beam contaminants (isobars)
- Low beam intensity and limited statistics (in particular of higher lying states)

Shape coexistence in N=28 isotones

Wolfram KORTEN

Ecole Joliot Curie – October 2012

3.0

Coulomb excitation set-up for RIBs (ex. SPIRAL)

Irfu CCCI saclay

16 large Ge Clover detectors 4×4 segmented photopeak efficiency $\varepsilon = 20\%$

> Double-sided Si detector 48 rings × 16 sectors

Coulomb excitation of ⁴⁴Ar at SPIRAL / GANIL

Wolfram KORTEN

lrfu

œ

saclay

Ecole Joliot Curie - October 2012

Determination of quadrupole moments

Coulomb excitation of ⁴⁴Ar at SPIRAL / GANIL

Shape coexistence around A=70

Possible O⁺ shape isomers and configuration mixing

lrfu

œ

saclay

Coulomb excitation of 74,76Kr at SPIRAL

Acta Phys. Pol. B 36, 1281 (2005)

lrfu

œ

saclay

Shape coexistence in ⁷⁴Kr

- ➢ ⁷⁴Kr + ²⁰⁸Pb at 4.7 MeV/u (SPIRAL)
 - → multi-step Coulomb excitation
- γ-ray yields as function of scattering angle (differential excitation cross section)
- experimental spectroscopic data (lifetimes, branching ratios)
- least squares fit of ~ 30 matrix elements (transitional and diagonal)

E. Clément et al., Phys. Rev. C 75, 054313 (2007)

Sensitivity to quadrupole moments

lrfu

æ

saclay

Ecole Joliot Curie – October 2012

direct confirmation of the prolate – oblate shape coexistence
 first reorientation measurement with radioactive beam

Wolfram KORTEN

Ecole Joliot Curie - October 2012

Coulomb excitation at Rex-Isolde (CERN)

lrfu

Coulomb excitation of ⁷⁰Se at Rex-ISOLDE

œ

Lifetimes in ⁷⁰Se revisited GASP and Köln Plunger at Legnaro

Coulomb excitation of 74-80Zn at Rex-Isolde

Ecole Joliot Curie – October 2012

Quadrupole collectivity of the Zn isotopes

Coulomb excitation of ⁷⁴Zn at Rex-Isolde

Life time measurements possible after multi-nucleon transfer reactions by using RDDS technique : reduce B(E2) error and determine Q_0 $\tau(2^+) \sim 28.5 \pm 3.6 \text{ ps}$ \Rightarrow slight preference for oblate shape

Shapes in neutron-rich A=100 nuclei

lrfu

æ

saclay

Irfu CCCI saclay

Shape transition in Sr isotopes

Coulomb excitation of ⁹⁶Sr at Rex-Isolde

Irfu CCCC

saclay

 $B(E2\downarrow)$

1506

2+

 0^{+}

399 (₋₃₉⁶⁷) e²fm4

- Coulomb excitation on $^{120}\mathrm{Sn}\,$ and $^{109}\mathrm{Ag}\,$
- Coulex normalisation through the target gamma line
- Differential and integrated cross section
 → GOSIA analysis

4+

2+

 0^+

 $Q_{0s} = -6 (9) \text{ efm}^2$

 $< 625 e^{2} fm4$

 $(9\overline{7}8)$

462 (11) e²fm4

 \rightarrow No quadrupole

 \rightarrow Weak mixing

Ecole Joliot Curie – October 2012

deformation

Coulomb excitation results on ⁹⁸Sr

E. Clement et al., to be published

2 targets : ²⁰⁸Pb & ⁶⁰Ni
 Clean kinematic separation

lrfu

saclay

Coulomb excitation results on ⁹⁸Sr

lrfu

æ

saclay

Coulomb excitation on 98Sr ($\gamma - \gamma$ analysis)

Wolfram KORTEN

Ecole Joliot Curie – October 2012

 6^{+}

500

600

144

8+

566

Coulomb Excitation of ¹³²Sn at HRIBF

- Opportunity to study a new doubly magic nucleus
- Study collectivity of N=82, Z=50 core excitation
- High E(2⁺) ~ 4MeV + small B(E2) + weak beam (10⁴ pps)
 → very low event rate

Ecole Joliot C

- Employ high efficiency $BaF_2 \gamma$ -array
 - ~ 40% full-energy at 4 MeV
- Use high-Z target (⁴⁸Ti)
- Run at higher ("unsafe") energies (495 MeV and 470 MeV)
- Limit distance of closest approach by looking only at forward angles in center of mass

courtesy of D. Radford

Ecole Joliot Curie – October 2012

courtesy of D. Radford

First results on ¹³²Sn

lrfu œ

- saclay ¹³²Sn beam, doubly stripped
 - 96% pure
 - 1.3 x 10⁵ ions/s
 - 3.75 & 3.56 MeV/u
 - ⁴⁸Ti target
 - High γ efficiency (~ 40%) •
 - Two-week experiment ٠
 - Fast γ -ion coincidences • to suppress background

First results on ¹³²Sn

lrfu

- saclay ¹³²Sn beam, doubly stripped
 - 96% pure
 - 1.3 x 10⁵ ions/s
 - 3.75 & 3.56 MeV/u
 - ⁴⁸Ti target
 - High γ efficiency (~ 40%)
 - Two-week experiment
 - Fast γ–ion coincidences to suppress background

Sample gamma-ray spectrum:

- ~30% of data
- Crystal gain matching & background suppression not yet optimum

First results on ¹³²Sn

lrfu

- saclay ¹³²Sn beam, doubly stripped
 - 96% pure
 - 1.3 x 10⁵ ions/s
 - 3.75 & 3.56 MeV/u
 - ⁴⁸Ti target
 - High γ efficiency (~ 40%)
 - Two-week experiment
 - Fast γ–ion coincidences to suppress background

B(E2; 0⁺→2⁺) ~ 0.11(3) e²b²

R. Varner *et al.,* EPJ. A 25, s01, 391 (2005) Sample gamma-ray spectrum:

- ~30% of data
- Crystal gain matching & background suppression not yet optimum

Wolfram KORTEN

Coulomb Excitation Results for Sn isotopes

Coulomb excitation studies with low-energy RIBs

Irfu CCC saclay

Drip lines and shell structure in light nuclei

- ✓ Drip-line nuclei: ^{10,11}Be, ...
- ✓ Mirror nuclei : ^{20,21}Na, ²¹Ne
- ✓ The "island of inversion" : 29,30 Na, 30,31,32 Mg

Coulomb excitation studies with low-energy RIBs

Coulomb excitation studies with low-energy RIBs

lrfu

Ecole Joliot Curie – October 2012