Diagonal and transitional matrix elements from low-energy Coulomb excitation and the link to deformation parameters

Magda Zielińska IRFU/SPhN, CEA Saclay, France

- What do we measure?
- How we extract matrix elements from the data?
- How they can be related to deformation parameters?

Why do we like Coulomb excitation?

- studies no longer limited to stable or long-lived nuclei
- beam energies at exotic beam facilities perfect for Coulomb excitation (2-5 MeV/A)
- high cross sections (excitation of 2_1^+ : barns)
- practical at the neutron-rich side

- direct measurement of quadrupole moment including sign ideal tool to study shape coexistence
- B(E2) as a measure of collectivity studies around magic numbers
- easy way to access non-yrast states and study their properties

What we can get from a Coulex experiment?

- observation of new excited levels, selective population of collective states

 first excited state in ⁸⁰Zn (J. Van de Walle et al, PRL 99 (2007) 142501)
 rotational band in ⁹⁷Rb (C. Sotty, G. Georgiev, to be published)
- B(E2) and B(M1) values between low-lying states, as well as B(E1)'s, B(E3)'s; in rare cases B(E4)
- relative signs of matrix elements
- for complex level schemes up to 50 ME's!
- signs and magnitudes of static E2 moments of excited states

Basic facts about Coulex

• Due to the purely electromagnetic interaction the nucleus undergoes a transition from state $|i\rangle$ to $|f\rangle$.

• Then it decays to the lower state, emitting a γ -ray (or a conversion electron).

• The matrix elements $\langle f || M(E2) || i \rangle$ describe the excitation and decay pattern \rightarrow they are directly connected with γ -ray intensities observed in the experiment.

Basic facts about Coulex experiments

• Due to the purely electromagnetic interaction the nucleus undergoes a transition from state $|i\rangle$ to $|f\rangle$.

 \rightarrow Cline's "safe energy" criterion – if the distance between nuclear surfaces is greater than 5 fm, the nuclear interaction is negligible.

• Then it decays to the lower state, emitting a γ -ray (or a conversion electron).

• The matrix elements $\langle f || M(E2) || i \rangle$ describe the excitation and decay pattern \rightarrow they are directly connected with γ -ray intensities observed in the experiment.

Basic facts about Coulex experiments

• Due to the purely electromagnetic interaction the nucleus undergoes a transition from state $|i\rangle$ to $|f\rangle$.

 \rightarrow Cline's "safe energy" criterion – if the distance between nuclear surfaces is greater than 5 fm, the nuclear interaction is negligible.

- \rightarrow to properly describe the excitation process particle detectors needed
- Then it decays to the lower state, emitting a γ -ray (or a conversion electron).
- The matrix elements $\langle f || M(E2) || i \rangle$ describe the excitation and decay pattern \rightarrow they are directly connected with γ -ray intensities observed in the experiment.

Basic facts about Coulex experiments

• Due to the purely electromagnetic interaction the nucleus undergoes a transition from state $|i\rangle$ to $|f\rangle$.

 \rightarrow Cline's "safe energy" criterion – if the distance between nuclear surfaces is greater than 5 fm, the nuclear interaction is negligible.

- \rightarrow to properly describe the excitation process particle detectors needed
- Then it decays to the lower state, emitting a γ -ray (or a conversion electron).
- \rightarrow gamma detectors needed
- The matrix elements $\langle f || M(E2) || i \rangle$ describe the excitation and decay pattern \rightarrow they are directly connected with γ -ray intensities observed in the experiment.

Safe energy

• Cline's "safe energy" criterion: purely electromagnetic interaction if the distance between nuclear surfaces is greater than 5 fm

$$d_{min} = 1.25 \cdot (A_p^{1/3} + A_t^{1/3}) + 5.0$$
 [fm]

- empirical criterion based on systematic studies of inelastic and transfer cross-sections at beam energies of few MeV/A *W.J. Kernan et al. / Transfer reactions*
- other criteria established for high-energy Coulex
- one-neutron sub-barrier transfer recently observed in Coulex of ⁴²Ca on ²⁰⁸Pb

Experiment step by step

- velocity vectors of reaction partners (from scattering angle and energy or TOF measured by particle detectors)
 - selection of Coulomb excitation events (high beam energy, exotic beam experiments, experiments with oxide targets...)
 - identification target-projectile
 - description of the excitation process (dependence on θ)
 - Doppler correction of gamma rays
 - possibility to study particle-gamma correlations
- γ -ray intensities following Coulex as a function of CM scattering angle

Once we have gamma-ray intensities...

...to convert them to cross section normalisation is needed

- known B(E2) in the studied nucleus
- known B(E2) in the reaction partner
- Rutherford cross section (technically diffucult so less accurate)

Final step: extraction of individual electromagnetic matrix elements from measured gamma-ray intensities

- simple cases (rare) : first/second order perturbation theory
- most cases too complicated: multiple Coulomb excitation
- excited states populated indirectly via intermediate states
- excitation probability of a given state may depend on many matrix elements
- set of coupled equations for excitation amplitudes – solved numerically: dedicated analysis codes

Gamma-particle angular correlations

- feasible at several thousands of counts in a given gamma line
- determination of E2/M1 mixing ratios
- determination of spin of a decaying level
- distribution in phi usually more conclusive than in theta

 the distributions are attenuated due to deorienation (recoil in vacuum) – possibility to measure g factors

Reorientation effect

• influence of the quadrupole moment of the excited state on its excitation cross-section: double excitation where "intermediate" states are the m substates of the state of interest

- dependence on scattering angle and beam energy
- however, influence of double-step excitation of other states may have the same effect (depending on $\frac{\Delta E}{E}$)

Reorientation effect

• influence of the quadrupole moment of the excited state on its excitation cross-section: double excitation where "intermediate" states are the m substates of the state of interest

- dependence on scattering angle and beam energy
- however, influence of double-step excitation of other states may have the same effect (depending on $\frac{\Delta E}{E}$)

Multi-step excitation and relative signs

sensitivity of Coulomb excitation data to relative signs of ME's: result of interference between single-step and multi-step amplitudes
sign of a product of matrix elements is an observable

GOSIA code

GOSIA: Rochester - Warsaw semiclassical Coulomb excitation least-squares search code

Developed in early eighties by T. Czosnyka, D. Cline, C.Y. Wu (Bull. Am. Phys. Soc. 28 (1983) 745.) and continuously upgraded

Approximations used in GOSIA

- 1. semi-classical approximation
 - trajectories can be described by the classical equations of motion, excitation process is described using quantum mechanics.

 $\lambda_{\text{projectile}} \ll \mathsf{D}$ \Rightarrow Sommerfeld parameter η

$$\eta = rac{\mathsf{D}}{2\lambda} = rac{\mathsf{Z}_\mathsf{p}\mathsf{Z}_\mathsf{t}\mathsf{e}^2}{\hbar\mathsf{v}} \gg 1$$

 condition well fulfilled in heavy-ion induced Coulomb excitation

- semiclassical treatment is expected to deviate from the exact calculation by terms of the order $\sim 1/\eta$

Approximations used in GOSIA

1. semi-classical approximation

• symmetrisation of the trajectory to take into account the energy transfer

2. limitation to the monopole-multipole term The excitation process can be described by the time-dependent H:

$$H = H_P + H_T + V(r(t))$$

with $H_{P/T}$ being the free Hamiltonian of the projectile/target nucleus and V(t) being the time-dependent electromagnetic interaction If the wave function is expressed by eigenfunctions of the free $H_{P/T}$:

 $\psi(t) = \sum_{n} a_n(t)\phi_n$ one gets a set of coupled equations for the time-dependent excitation amplitudes $a_n(t)$

$$i\hbar \frac{da_n(t)}{dt} = \sum_m \langle \phi_n | V(t) | \phi_m \rangle \exp(i(E_n - E_m)/\hbar) a_m(t)$$

$$\begin{split} V(r(t)) &= Z_T Z_P e^2 / r \text{ monopole-monopole (Rutherford) term} \\ &+ \sum_{\lambda \mu} V_P(E\lambda,\mu) + \sum_{\lambda \mu} V_T(E\lambda,\mu) \text{ electric multipole-monopole excitation,} \\ &+ \sum_{\lambda \mu} V_P(E\lambda,\mu) + \sum_{\lambda \mu} V_T(E\lambda,\mu) \text{ magnetic excitation (small at low v/c)} \\ &+ \text{ higher order multipole-multipole terms (neglected – estimated at ~ 0.5 %)} \end{split}$$

Approximations used in GOSIA

- 1. semi-classical approximation
 - symmetrisation of the trajectory to take into account the energy transfer
- 2. limitation to the monopole-multipole term other effects taken into account in the description of the excitation process:
- correction for the dipole polarisation effect: quadrupole interaction V(E2) multiplied by a factor

$$1 - d \cdot \frac{E_p A_t}{Z_t^2 (1 + A_p / A_t)} \frac{a}{r}$$

where d = 0.005 (empirical E1 polarisation strength, from photo-nuclear absorption cross section or GDR energy + dipole sum rule)

Alder and Winther, Coulomb excitation, appendix J important for high-lying levels, high CM angles, heavy beams: ¹⁰⁴Ru -10% change of population of 10^+_{γ} if effect increased 2 times

 integration over scattering angles covered by particle detectors and incident energy (beam stopping in the target) - changing meshpoints may give an effect of few %, especially for multi-step excitation

Effects taken into account when describing decay

- start from statistical tensors calculated in the excitation stage
 information on excitation probability and initial sub-state population
- cascade feeding from higher-lying states
- deorientation of the angular distribution (due to recoil in vacuum): Brenn and Spehl two-state model:
 ¹⁰⁴Ru - 2% change of matrix elements if effect increased by 20%
- relativistic transformation of solid angles
- attenuation due to finite size of gamma-ray detectors
- simplified (cylindrical) detector geometry
- all approximations have usually an effect $\sim 5\%$ on gamma-ray intensities (often similar to statistical uncertainties, increasing with number of steps needed)
- uncertainties lower than this are rather suspicious (unless they reflect the precision of a lifetime measurement, but the quality of such measurement should also be verified)

Number of parameters versus number of data points

- number of matrix elements coupling low-lying states is higher than number of transitions observed in a Coulex experiment
- some of them have much smaller influence on gamma-ray intensities than the others
- even if dependence of cross-sections on scattering angle can be used, often problem remains underdetermined
 - especially if E1, E3 matrix elements are declared, or for odd nuclei M1
- additional spectroscopic data needed
 - $\circ\,$ these data are not used to fix some parameters, but enter the $\chi^2\,$ function on the equal basis as gamma-ray intensities
- in rare very undetermined cases theoretical relations between the ME's may be used (which couplings are negligible, similar, etc...)

Additional measurements needed for Coulex data analysis...

- lifetime measurements
 - necessary for integral cross-section measurements

Additional measurements needed for Coulex data analysis...

- lifetime measurements
 - necessary for integral cross-section measurements

 increase precision of quadrupole moments/intra-band matrix elements for differential measurements

Additional measurements needed for Coulex data analysis...

- lifetime measurements
 - necessary for integral cross-section measurements

- increase precision of quadrupole moments/intra-band matrix elements for differential measurements
- beam composition (isobaric contamination/isomeric ratio)
- beam energy
- conversion coefficients/E0 branchings

Coulomb excitation and lifetime measurements

- results inconsistent with previously published lifetimes
- new RDM lifetime measurement: Köln Plunger & GASP
 ⁴⁰Ca (⁴⁰Ca,α2p) ⁷⁴Kr
 ⁴⁰Ca (⁴⁰Ca,4p) ⁷⁶Kr

- subdivision of data in several ranges of scattering angle
- spectroscopic data (lifetimes, branching and mixing ratios)
- least squares fit of \sim 30 matrix elements (transitional and diagonal)

Lifetime measurement

A. Görgen et al. EPJ A 26 153 (2005)

⁷⁴Kr, forward detectors (36°) gated from above

- new lifetimes in agreement with Coulex
- enhanced sensitivity for diagonal and intra-band transitional matrix elements

Results: shape coexistence in light Kr isotopes

First measurement of diagonal E2 matrix elements using Coulex of radioactive beam E. Clément *et al.* Phys. Rev. C75, 054313 (2007)

Global vs local minimum

Standard question: is this a unique solution, or maybe a different combination of matrix elements can reproduce the experimental data?

Genetic Algorithm in GOSIA: JACOB (P. Napiorkowski, HIL Warsaw)

GOSIA:

- often trapped in a local minimum
- various starting points have to be carefully checked (combinations of signs and magnitudes)
- only for very simple cases "plug and play"

JACOB:

- scan of the χ^2 surface, "promising" minima localised
- integration procdure repeated for each of them, real solutions identified
- alternative method for error estimation (in development)

D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683 K. Kumar, PRL 28 (1972) 249

- number of matrix elements obtained from a Coulomb excitation analysis can reach 20-50 (+ for some of them signs are determined)
- quadrupole collectivity produces strong correlations of E2 matrix elements: number of significant collective variables is much lower than the number of matrix elements
- direct comparison of each ME's from experiment and theory is not always conclusive.
- quadrupole invariants provide a syntetic information that can be compared with model predictions.
- \bullet electromagnetic multipole operators are spherical tensors \rightarrow products of such operators coupled to angular momentum 0 are rotationally invariant
- in the intrinsic frame of the nucleus, the E2 operator may be expressed by 2 parameters related to charge distribution:

$$E(2,0) = Q\cos\delta$$
$$E(2,2) = E(2,-2) = \frac{Q}{\sqrt{2}}\sin\delta$$
$$E(2,1) = E(2,-1) = 0$$

Quadrupole sum rules

D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683 K. Kumar, PRL 28 (1972) 249

 operator products may be expressed by matrix elements using the intermediate state expansion formula

$$\frac{\langle Q^2 \rangle}{\sqrt{5}} = \langle i | [E2 \times E2]^0 | i \rangle = \frac{1}{\sqrt{(2I_i + 1)}} \sum_t \langle i | | E2 | i \rangle \langle t | | E2 | i \rangle \left\{ \begin{array}{cc} 2 & 2 & 0 \\ I_i & I_i & I_t \end{array} \right\}$$

$$\stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{4^*_1}{\xrightarrow{2^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{4^*_1}{\xrightarrow{2^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{4^*_1}{\xrightarrow{2^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{4^*_1}{\xrightarrow{2^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{4^*_1}{\xrightarrow{2^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{2^*_3}{\xrightarrow{4^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{2^*_3}{\xrightarrow{4^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{2^*_3}{\xrightarrow{4^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{2^*_3}{\xrightarrow{4^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{2^*_3}{\xrightarrow{4^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{2^*_3}{\xrightarrow{4^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{2^*_3}{\xrightarrow{4^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{2^*_3}{\xrightarrow{4^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_1}} \stackrel{2^*_3}{\xrightarrow{4^*_2}} \stackrel{2^*_3} \stackrel{2^*_3}{\xrightarrow{4^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_2}} \stackrel{2^*_3}{\xrightarrow{4^*_2}} \stackrel{2^*_3$$

1

Determination to $\langle Q^2 \rangle \textbf{:}$ example of ^{100}Mo

K. Wrzosek-Lipska et al, PRC 86 (2012) 064305

state	loop	contribution to $\langle Q^2 \rangle$	2 ⁺ ₃
		[e2b2]	4.
	$\langle 0_1^+ \ \mathbf{E}2 \ 2_1^+ \rangle \langle 2_1^+ \ \mathbf{E}2 \ 0_1^+ \rangle$	0.46	
0_1^+	$\langle 0_1^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 0_1^+ \rangle$	0.01	0 ⁺ _2
	$\langle 0_1^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_1^+ \rangle$	0.0002	21
	Total	0.48	2 ⁺
	$\langle 0_2^+ \ \mathbf{E}2 \ 2_1^+ \rangle \langle 2_1^+ \ \mathbf{E}2 \ 0_2^+ \rangle$	0.26	, s , +
0_{2}^{+}	$\langle 0_1^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 0_2^+ \rangle$	0.10	2_{2}^{+}
	$\langle 0_2^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_2^+ \rangle$	0.25	
	Total	0.62	01

Quadrupole sum rules: triaxiality

D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) K. Kumar, PRL 28 (1972)

$$\sqrt{\frac{2}{35}} \langle \mathbf{Q}^3 \cos 3\delta \rangle = \langle i | \{ [\mathbf{E}2 \times \mathbf{E}2]^2 \times \mathbf{E}2 \}^0 | i \rangle$$
$$= \frac{1}{(2I_i + 1)} \sum_{t,u} \langle i || \mathbf{E}2 || u \rangle \langle u || \mathbf{E}2 || t \rangle \langle t || \mathbf{E}2 || i \rangle \left\{ \begin{array}{ccc} 2 & 2 & 2 \\ I_i & I_t & I_u \end{array} \right\}$$

$\langle \cos 3\delta \rangle$: triaxiality parameter

Determination of $\langle\cos3\delta\rangle$: example of $^{100}\mathrm{Mo}$

state	loop	contribution	
		to $\langle Q^3\cos 3\delta angle$	
01+	$\langle 0_1^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 0_1^+ \rangle$	-0.154	
	$\langle 0_1^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 0_1^+ \rangle$	0.132	
	$\langle 0_1^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_1^+ \rangle$	0.002	
	$\langle 0_1^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 0_1^+ \rangle$	0.013	0^+_2
	$\langle 0_1^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_1^+ \rangle$	-0.001	
	$\langle 0_1^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_1^+ \rangle$	-0.0001	
	Total	-0.008	
0 <mark>+</mark>	$\langle 0_2^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 0_2^+ \rangle$	-0.09	
	$\langle 0_2^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 0_2^+ \rangle$	-0.31	
	$\langle 0_2^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_2^+ \rangle$	-0.04	41
	$\langle 0_2^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 0_2^+ \rangle$	0.12	
	$\langle 0_2^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_2^+ \rangle$	-0.13	
	$\langle 0_2^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_2^+ \rangle$	-0.06	
	Total	-0.51	0 ⁺ ₁

Shape evolution of ^{96–100}Mo

M. Zielińska et al, Nucl. Phys. A 712 (2002) 3 K. Wrzosek-Lipska et al, PRC 86 (2012) 064305

- Ge isotopes, ⁹⁶Mo: coexistence of the deformed ground state with a spherical 0⁺₂
- ground states of the Mo isotopes triaxial, deformation of 0⁺₂ increasing with N
- shape coexistence in ⁹⁸Mo manifested in a different triaxiality of 0⁺₁ and 0⁺₂

Shape evolution of ^{96–100}Mo

M. Zielińska et al, Nucl. Phys. A 712 (2002) 3 K. Wrzosek-Lipska et al, PRC 86 (2012) 064305

Do we really know all states that should enter the sum?

• especially for the (E2 x E2 x E2), where terms can cancel out – can we say that terms involving higher lying levels (e.g. the 2_4^+ state) do not significantly contribute to the magnitude of the rotational invariant?

• common argument: if such state were coupled to the state in question via a huge E2 matrix element, it would be populated in the experiment

• comparison with GBH calculations for ¹⁰⁰Mo: Q^2 , Q^3 cos (3 δ) calculated directly and from theoretical values of matrix elements, limited to the same 3 intermediate states

 \Rightarrow difference below 3% for both 0⁺ states

Link to beta and gamma

- relations between the quadrupole invariants and β , γ variables depend on the definition of the collective variables
 - Nilsson model ellipsoidal deformation parameters: formulae given in: J. Srebrny, Nucl. Phys. A 766 (2006) 25

$$\begin{split} \mathsf{Q}^2 &= (\frac{3}{4\pi}\mathsf{Z}\mathsf{R}^2)^2 (\beta^2 + 2\mathsf{C}\beta^3 \mathsf{cos} 3\gamma + \mathsf{C}^2\beta^4) \approx \mathsf{q}_0^2 (\beta^2 + 2\mathsf{C}\beta^3 \mathsf{cos} 3\gamma + 17\mathsf{C}^2\beta^4) + \mathsf{O}(\beta^5) \\ \mathsf{Q}^3 \mathsf{cos} 3\delta &= (\frac{3}{4\pi}\mathsf{Z}\mathsf{R}^2)^3 (\beta^3 \mathsf{cos} 3\gamma + 3\mathsf{C}\beta^4 + 3\mathsf{C}^2\beta^5 \mathsf{cos} 3\gamma + 2\mathsf{C}^3\beta^6 \mathsf{cos}^2 3\gamma - \mathsf{C}^3\beta^6) \\ &\approx \mathsf{q}_0^3 (\beta^3 \mathsf{cos} 3\gamma + 27\mathsf{C}\beta^4 + 3\mathsf{C}\beta^4 + 30\mathsf{C}^3\beta^6 \mathsf{cos}^2 3\gamma + 71\mathsf{C}^3\beta^6) + \mathsf{O}(\beta^7) \\ \mathsf{where} \ \mathsf{q}_0 &= 3/4\pi\mathsf{Z}\mathsf{R}_0^2, \ C &= 1/4\sqrt{5/4\pi} \end{split}$$

Link to beta and gamma

- relations between the quadrupole invariants and β , γ variables depend on the definition of the collective variables
 - Bohr Collective Hamiltonian (K. Wrzosek, PRC 86 (2012) 064305)

$$\langle \mathsf{Q}^2 \rangle = \mathsf{q}_0^2 \langle \beta^2 \rangle, \langle \mathsf{Q}^3 \mathrm{cos} 3\delta \rangle = \mathsf{q}_0^3 \langle \beta^3 \mathrm{cos} 3\gamma \rangle$$

(1) values deduced from probability density distributions
 (2) values calculated from theoretical ME's

FIG. 15. Probability density [Eq. (26)] for the 0_1^+ and 0_2^+ states for the Skyrme SLy4 interaction. The contour interval is 0.3.

Experimental applications and limitations

- this technique works best for transitional nuclei
- it is safest for 0⁺ states (only 2⁺ states enter sums)
- for 2^+ problem how to populate 3^+ states (as shown by the ¹⁰⁴Ru case)
- successfully applied to (among others):
 - prolate-oblate shape transition in the chain of ^{186–192}Os,¹⁹⁴Pt,
 C.Y. Wu, Nucl. Phys. A 607 (1996) 178

C.Y. Wu et al. / Nuclear Physics A 607 (1996) 178-234

GROUND STATE E2 INVARIANTS

Experimental applications and limitations

- this technique works best for transitional nuclei
- it is safest for 0⁺ states (only 2⁺ states enter sums)
- for 2^+ problem how to populate 3^+ states (as shown by the ¹⁰⁴Ru case)
- successfully applied to (among others):
 - prolate-oblate shape transition in the chain of ¹⁸⁶⁻¹⁹²Os, ¹⁹⁴Pt,
 C.Y. Wu, Nucl. Phys. A 607 (1996) 178
 - non-axial stiff rotors: ¹⁶⁸Er, ^{182,184}W,
 - B. Kotliński, Nucl. Phys. A517 (1990) 365, C.Y. Wu, Nucl. Phys. A533 (1991) 359
 - quasi-vibrational ¹⁰⁴Ru,
 - J. Srebrny, Nucl. Phys. A 766 (2006) 25
 - shape coexistence:
 - ⁷⁰⁻⁷⁶Ge, M. Sugawara, Eur. Phys. J. A16 (2003) 409 and ref. therein
 - ∘ ^{96–100}Mo, M. Zielińska, Nucl. Phys. A 712 (2002) 3,
 - K. Wrzosek, PRC 86 (2012) 064305