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Diagonal and transitional matrix elements from
low-energy Coulomb excitation and the link to

deformation parameters

Magda Zielińska

IRFU/SPhN, CEA Saclay, France

• What do we measure?

• How we extract matrix elements from the data?

• How they can be related to deformation parameters?
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Why do we like Coulomb excitation?

• studies no longer limited to stable or long-lived nuclei

• beam energies at exotic beam facilities perfect for Coulomb excitation (2-5
MeV/A)

• high cross sections (excitation of 2+
1 : barns)

• practical at the neutron-rich side

• direct measurement of quadrupole moment including sign – ideal tool to
study shape coexistence

• B(E2) as a measure of collectivity - studies around magic numbers

• easy way to access non-yrast states and study their properties
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What we can get from a Coulex experiment?

• observation of new excited levels, selective population of collective states
◦ first excited state in 80Zn (J. Van de Walle et al, PRL 99 (2007) 142501)
◦ rotational band in 97Rb (C. Sotty, G. Georgiev, to be published)

• B(E2) and B(M1) values between low-lying states, as well as B(E1)’s,
B(E3)’s; in rare cases B(E4)

• relative signs of matrix elements

• for complex level schemes up to 50 ME’s!

• signs and magnitudes of static E2 moments of excited states



Magda Zielińska, CEA Saclay Nuclear Structure and Astrophysical Applications, ECT* Trento, 8-12 July 2013 - p. 4/39

Basic facts about Coulex

• Due to the purely electromagnetic interaction the nucleus undergoes a
transition from state |i〉 to |f〉.

• Then it decays to the lower state, emitting a γ-ray (or a conversion
electron).

• The matrix elements 〈f ||M(E2)||i〉 describe the excitation and decay
pattern → they are directly connected with γ-ray intensities observed in the
experiment.

• In the intrinsic frame of the nucleus they are related to the deformation
parameters.
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Basic facts about Coulex experiments

• Due to the purely electromagnetic interaction the nucleus undergoes a
transition from state |i〉 to |f〉.
→ Cline’s "safe energy" criterion – if the distance between nuclear surfaces
is greater than 5 fm, the nuclear interaction is negligible.

• Then it decays to the lower state, emitting a γ-ray (or a conversion
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• The matrix elements 〈f ||M(E2)||i〉 describe the excitation and decay
pattern → they are directly connected with γ-ray intensities observed in the
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• In the intrinsic frame of the nucleus they are related to the deformation
parameters.
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Basic facts about Coulex experiments

• Due to the purely electromagnetic interaction the nucleus undergoes a
transition from state |i〉 to |f〉.
→ Cline’s "safe energy" criterion – if the distance between nuclear surfaces
is greater than 5 fm, the nuclear interaction is negligible.

→ to properly describe the excitation process - particle detectors needed

• Then it decays to the lower state, emitting a γ-ray (or a conversion
electron).
→ gamma detectors needed

• The matrix elements 〈f ||M(E2)||i〉 describe the excitation and decay
pattern → they are directly connected with γ-ray intensities observed in the
experiment.

• In the intrinsic frame of the nucleus they are related to the deformation
parameters.
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Safe energy

• Cline’s ”safe energy” criterion: purely electromagnetic interaction if the
distance between nuclear surfaces is greater than 5 fm

dmin = 1.25 · (A1/3
p +A

1/3
t ) + 5.0 [fm]

• empirical criterion based on systematic studies of inelastic and transfer
cross-sections at beam energies of few MeV/A

• other criteria established for high-energy
Coulex

• one-neutron sub-barrier transfer recently
observed in Coulex of 42Ca on 208Pb
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Experiment step by step

• velocity vectors of reaction partners (from scattering angle and energy or
TOF measured by particle detectors)
◦ selection of Coulomb excitation events (high beam energy, exotic beam

experiments, experiments with oxide targets...)
◦ identification target-projectile
◦ description of the excitation process (dependence on θ)
◦ Doppler correction of gamma rays
◦ possibility to study particle-gamma correlations

• γ-ray intensities following Coulex as a function of CM scattering angle

0 400 800 1200
Eγ  (keV)

1

10

100

1000

co
un

ts
 / 

ke
v

A

4 1+ →
 2

1+2
1

+
→ 0

1

+

6 1+ →
 4

1+

2 2+ →
 2

1+

0 2+ →
 2

1+

2 2+ →
 0

1+

8 1+ →
 6

1+

4 2+ →
 2

2+

2 3+ →
 0

2+

4 2+ →
 4

1+

400 800 1200
Eγ  (keV)

B

400 800 1200
Eγ  (keV)

C

400 800 1200
Eγ  (keV)

D
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Once we have gamma-ray intensities...

...to convert them to cross section normalisation is needed

• known B(E2) in the studied nucleus

• known B(E2) in the reaction partner

• Rutherford cross section (technically diffucult so less accurate)

Final step: extraction of individual electromagnetic matrix elements from
measured gamma-ray intensities

• simple cases (rare) : first/second order perturbation theory

• most cases too complicated: multiple Coulomb excitation

• excited states populated indirectly via
intermediate states

• excitation probability of a given state
may depend on many matrix elements

• set of coupled equations for excitation
amplitudes – solved numerically:
dedicated analysis codes 536
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Magda Zielińska, CEA Saclay Nuclear Structure and Astrophysical Applications, ECT* Trento, 8-12 July 2013 - p. 11/39

Gamma-particle angular correlations

• feasible at several thousands of counts in a given gamma line
• determination of E2/M1 mixing ratios
• determination of spin of a decaying level
• distribution in phi usually more conclusive than in theta

• the distributions are attenuated due to deorienation (recoil in vacuum) –
possibility to measure g factors
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Reorientation effect

• influence of the quadrupole moment of the excited state on its excitation
cross-section: double excitation where ”intermediate” states are the m
substates of the state of interest

• dependence on scattering angle and beam energy

• however, influence of double-step excitation of other states may have the

same effect (depending on ∆E
E )
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Reorientation effect
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Multi-step excitation and relative signs

• sensitivity of Coulomb excitation data to relative signs of ME’s:
result of interference between single-step and multi-step amplitudes
• sign of a product of matrix elements is an observable

• negative 〈2+1 ‖E2‖2+2 〉 and 〈2+1 ‖E2‖2+1 〉: much higher

population of 2+2 at high CM angles

• calculations for 110Ru on 208Pb
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Magda Zielińska, CEA Saclay Nuclear Structure and Astrophysical Applications, ECT* Trento, 8-12 July 2013 - p. 15/39

GOSIA code

GOSIA: Rochester - Warsaw semiclassical Coulomb excitation
least-squares search code

Developed in early eighties by T. Czosnyka, D. Cline, C.Y. Wu (Bull. Am.
Phys. Soc. 28 (1983) 745.) and continuously upgraded

level scheme
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Approximations used in GOSIA

1. semi-classical approximation
• trajectories can be described by the classical equations of motion,

excitation process is described using quantum mechanics.

b

Dprojectile

target

λprojectile ≪ D
⇒ Sommerfeld parameter η

η = D
2λ̄ =

ZpZte
2

~v
≫ 1

• condition well fulfilled in heavy-ion
induced Coulomb excitation

• semiclassical treatment is expected to deviate from the exact calculation
by terms of the order ∼ 1/η
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Approximations used in GOSIA

1. semi-classical approximation
• symmetrisation of the trajectory to take into account the energy transfer

2. limitation to the monopole-multipole term
The excitation process can be described by the time-dependent H:

H = HP +HT + V (r(t))

with HP/T being the free Hamiltonian of the projectile/target nucleus and V(t) being
the time-dependent electromagnetic interaction

If the wave function is expressed by eigenfunctions of the free HP/T :

ψ(t) =
∑

n an(t)φn one gets a set of coupled equations for the time-dependent

excitation amplitudes an(t)

i~
dan(t)

dt
=

∑

m

〈φn|V (t)|φm〉 exp(i(En − Em)/~)am(t)

V (r(t)) = ZTZP e
2/r monopole-monopole (Rutherford) term

+
∑

λµ VP (Eλ, µ) +
∑

λµ VT (Eλ, µ) electric multipole-monopole excitation,

+
∑

λµ VP (Eλ, µ) +
∑

λµ VT (Eλ, µ) magnetic excitation (small at low v/c)

+ higher order multipole-multipole terms (neglected – estimated at ∼ 0.5 %)
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Approximations used in GOSIA

1. semi-classical approximation
• symmetrisation of the trajectory to take into account the energy transfer

2. limitation to the monopole-multipole term
other effects taken into account in the description of the excitation
process:

• correction for the dipole polarisation effect: quadrupole interaction V(E2)
multiplied by a factor

1− d · EpAt

Z2
t (1 +Ap/At)

a

r

where d = 0.005 (empirical E1 polarisation strength, from photo-nuclear
absorption cross section or GDR energy + dipole sum rule)
Alder and Winther, Coulomb excitation, appendix J

important for high-lying levels, high CM angles, heavy beams: 104Ru -
10% change of population of 10+

γ if effect increased 2 times

• integration over scattering angles covered by particle detectors and
incident energy (beam stopping in the target) - changing meshpoints may
give an effect of few %, especially for multi-step excitation
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Effects taken into account when describing decay

• start from statistical tensors calculated in the excitation stage
◦ information on excitation probability and initial sub-state population

• cascade feeding from higher-lying states

• deorientation of the angular distribution (due to recoil in vacuum):
Brenn and Spehl two-state model:
104Ru - 2% change of matrix elements if effect increased by 20%

• relativistic transformation of solid angles

• attenuation due to finite size of gamma-ray detectors

• simplified (cylindrical) detector geometry

• all approximations have usually an effect ∼ 5% on gamma-ray intensities
(often similar to statistical uncertainties, increasing with number of steps
needed)

• uncertainties lower than this are rather suspicious (unless they reflect the
precision of a lifetime measurement, but the quality of such measurement
should also be verified)
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Number of parameters versus number of data points

• number of matrix elements coupling low-lying states is higher than
number of transitions observed in a Coulex experiment

• some of them have much smaller influence on gamma-ray intensities than
the others

• even if dependence of cross-sections on scattering angle can be used,
often problem remains underdetermined
◦ especially if E1, E3 matrix elements are declared, or for odd nuclei – M1

• additional spectroscopic data needed
◦ these data are not used to fix some parameters, but enter the χ2

function on the equal basis as gamma-ray intensities

• in rare very undetermined cases theoretical relations between the ME’s
may be used (which couplings are negligible, similar, etc...)
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Additional measurements needed for Coulex data analysis...

• lifetime measurements
◦ necessary for integral cross-section measurements
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Additional measurements needed for Coulex data analysis...

• lifetime measurements
◦ necessary for integral cross-section measurements
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◦ increase precision of quadrupole moments/intra-band matrix elements
for differential measurements
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Additional measurements needed for Coulex data analysis...

• lifetime measurements
◦ necessary for integral cross-section measurements
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◦ increase precision of quadrupole moments/intra-band matrix elements
for differential measurements

• beam composition (isobaric contamination/isomeric ratio)

• beam energy

• conversion coefficients/E0 branchings
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Coulomb excitation and lifetime measurements
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• subdivision of data in several ranges of
scattering angle

• spectroscopic data (lifetimes, branching
and mixing ratios)

• least squares fit of ∼30 matrix elements
(transitional and diagonal)

• results inconsistent with
previously published lifetimes

• new RDM lifetime
measurement:
Köln Plunger & GASP
40Ca (40Ca,α2p) 74Kr
40Ca (40Ca,4p) 76Kr
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Lifetime measurement A. Görgen et al. EPJ A 26 153 (2005)

old new old new

2+ 35.3(10) ps 41.5(8) ps 2+ 28.8(57) ps 33.8(6) ps76Kr

4+ 4.8(5) ps 3.87(9) ps

74Kr

4+ 13.2(7) ps 5.2(2) ps

74Kr, forward detectors (36◦)
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• new lifetimes in agreement with Coulex

• enhanced sensitivity for diagonal and
intra-band transitional matrix elements
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Results: shape coexistence in light Kr isotopes

76Kr: 18 transitional + 5 diagonal ME
74Kr: 14 transitional + 5 diagonal ME

〈2+1 ‖E2‖2+1 〉 = – 0.70−0.33
−0.30

〈4+1 ‖E2‖4+1 〉 = – 1.02+0.59
−0.21

〈2+2 ‖E2‖2+2 〉 = + 0.33+0.28
−0.23
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E. Clément et al. Phys. Rev. C75, 054313 (2007)
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Global vs local minimum

Standard question: is this a unique solution, or maybe a different
combination of matrix elements can reproduce the experimental data?

Genetic Algorithm in GOSIA: JACOB (P. Napiorkowski, HIL Warsaw)

GOSIA:
• often trapped in a local minimum

• various starting points have to be carefully checked (combinations of signs
and magnitudes)

• only for very simple cases ”plug and play”

JACOB:
• scan of the χ2 surface, ”promising” minima localised

• integration procdure repeated for each of them, real solutions identified

• alternative method for error estimation (in development)
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Quadrupole sum rules D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683

K. Kumar, PRL 28 (1972) 249

• number of matrix elements obtained from a Coulomb excitation analysis
can reach 20-50 (+ for some of them signs are determined)

• quadrupole collectivity produces strong correlations of E2 matrix
elements: number of significant collective variables is much lower than the
number of matrix elements

• direct comparison of each ME’s from experiment and theory is not always
conclusive.

• quadrupole invariants provide a syntetic information that can be compared
with model predictions.

• electromagnetic multipole operators are spherical tensors → products of
such operators coupled to angular momentum 0 are rotationally invariant

• in the intrinsic frame
of the nucleus, the E2 operator
may be expressed by 2 parame-
ters related to charge distribution:

E(2, 0) = Qcosδ

E(2, 2) = E(2,−2) =
Q√
2
sinδ

E(2, 1) = E(2,−1) = 0
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Quadrupole sum rules D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683

K. Kumar, PRL 28 (1972) 249

• operator products may be expressed by matrix elements using the
intermediate state expansion formula

〈Q2〉√
5

= 〈i| [E2× E2]
0 |i〉 = 1

√

(2Ii + 1)

∑

t

〈i‖E2‖t〉〈t‖E2‖i〉
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2 2 0
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〈Q2〉: overall deformation parameter
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Determination to 〈Q2〉: example of 100Mo

K. Wrzosek-Lipska et al, PRC 86 (2012) 064305

state loop contribution to 〈Q2〉

[e2b2]

〈0+1 ‖E2‖2+1 〉〈2+1 ‖E2‖0+1 〉 0.46

0+1 〈0+1 ‖E2‖2+2 〉〈2+2 ‖E2‖0+1 〉 0.01

〈0+1 ‖E2‖2+3 〉〈2+3 ‖E2‖0+1 〉 0.0002

Total 0.48

〈0+2 ‖E2‖2+1 〉〈2+1 ‖E2‖0+2 〉 0.26

0+2 〈0+1 ‖E2‖2+2 〉〈2+2 ‖E2‖0+2 〉 0.10

〈0+2 ‖E2‖2+3 〉〈2+3 ‖E2‖0+2 〉 0.25

Total 0.62
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Quadrupole sum rules: triaxiality

D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986)

K. Kumar, PRL 28 (1972)

√

2

35
〈Q3 cos 3δ〉 = 〈i|{[E2× E2]2 × E2}0|i〉

=
1

(2Ii + 1)

∑

t,u

〈i‖E2‖u〉〈u‖E2‖t〉〈t‖E2‖i〉
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〈cos 3δ〉: triaxiality parameter
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Determination of 〈cos 3δ〉: example of 100Mo

state loop contribution

to 〈Q3 cos 3δ〉

〈0+1 ‖E2‖2+1 〉〈2+1 ‖E2‖2+1 〉〈2+1 ‖E2‖0+1 〉 -0.154

〈0+1 ‖E2‖2+1 〉〈2+1 ‖E2‖2+2 〉〈2+2 ‖E2‖0+1 〉 0.132

〈0+1 ‖E2‖2+1 〉〈2+1 ‖E2‖2+3 〉〈2+3 ‖E2‖0+1 〉 0.002

0+1 〈0+1 ‖E2‖2+2 〉〈2+2 ‖E2‖2+2 〉〈2+2 ‖E2‖0+1 〉 0.013

〈0+1 ‖E2‖2+2 〉〈2+2 ‖E2‖2+3 〉〈2+3 ‖E2‖0+1 〉 -0.001

〈0+1 ‖E2‖2+3 〉〈2+3 ‖E2‖2+3 〉〈2+3 ‖E2‖0+1 〉 -0.0001

Total -0.008

〈0+2 ‖E2‖2+1 〉〈2+1 ‖E2‖2+1 〉〈2+1 ‖E2‖0+2 〉 -0.09

〈0+2 ‖E2‖2+1 〉〈2+1 ‖E2‖2+2 〉〈2+2 ‖E2‖0+2 〉 -0.31

〈0+2 ‖E2‖2+1 〉〈2+1 ‖E2‖2+3 〉〈2+3 ‖E2‖0+2 〉 -0.04

0+2 〈0+2 ‖E2‖2+2 〉〈2+2 ‖E2‖2+2 〉〈2+2 ‖E2‖0+2 〉 0.12

〈0+2 ‖E2‖2+2 〉〈2+2 ‖E2‖2+3 〉〈2+3 ‖E2‖0+2 〉 -0.13

〈0+2 ‖E2‖2+3 〉〈2+3 ‖E2‖2+3 〉〈2+3 ‖E2‖0+2 〉 -0.06

Total -0.51
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Shape evolution of 96−100Mo M. Zielińska et al, Nucl. Phys. A 712 (2002) 3

K. Wrzosek-Lipska et al, PRC 86 (2012) 064305

• Ge isotopes, 96Mo: coexistence of the deformed ground state with a

spherical 0+
2

• ground states of the Mo isotopes triaxial, deformation of 0+
2 increasing

with N

• shape coexistence in 98Mo manifested in a different triaxiality of 0+
1 and 0+

2
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Shape evolution of 96−100Mo M. Zielińska et al, Nucl. Phys. A 712 (2002) 3

K. Wrzosek-Lipska et al, PRC 86 (2012) 064305

•
100Mo: good agreement
with GBH calculations

•
96,98Mo: 0+

2 band
not well described

Calculations by L.Próchniak

(in K. Wrzosek-Lipska et al)
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Do we really know all states that should enter the sum?

• especially for the (E2 x E2 x E2), where terms can cancel out – can we

say that terms involving higher lying levels (e.g. the 2+
4 state) do not

significantly contribute to the magnitude of the rotational invariant?

• common argument: if such state were coupled to the state in question via
a huge E2 matrix element, it would be populated in the experiment

• comparison with GBH calculations for 100Mo: Q2, Q3cos (3 δ) calculated
directly and from theoretical values of matrix elements, limited to the same 3
intermediate states

⇒ difference below 3% for both 0+ states
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Link to beta and gamma

• relations between the quadrupole invariants and β, γ variables depend on
the definition of the collective variables

◦ Nilsson model ellipsoidal deformation parameters: formulae given in:
J. Srebrny, Nucl. Phys. A 766 (2006) 25

Q2 = (
3

4π
ZR2)2(β2+2Cβ3cos3γ+C2β4) ≈ q20(β

2+2Cβ3cos3γ+17C2β4)+O(β5)

Q3cos3δ = (
3

4π
ZR2)3(β3cos3γ + 3Cβ4 + 3C2β5cos3γ + 2C3β6cos23γ − C3β6)

≈ q30(β
3cos3γ + 27Cβ4 + 3Cβ4 + 30C3β6cos23γ + 71C3β6) + O(β7)

where q0 = 3/4πZR2
0, C = 1/4

√

5/4π
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Link to beta and gamma

• relations between the quadrupole invariants and β, γ variables depend on
the definition of the collective variables
◦ Bohr Collective Hamiltonian (K. Wrzosek, PRC 86 (2012) 064305)

〈Q2〉 = q20〈β2〉, 〈Q3cos3δ〉 = q30〈β3cos3γ 〉

(1) values deduced from probability density distributions
(2) values calculated from theoretical ME’s

GBH

(1) (2) exp

β 0.20 0.20 0.22 ±0.01

γ 27◦ 27◦ 29◦±3◦

β 0.24 0.24 0.25 ±0.01

γ 18◦ 17◦ 10◦±3◦
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Experimental applications and limitations

• this technique works best for transitional nuclei

• it is safest for 0+ states (only 2+ states enter sums)

• for 2+ – problem how to populate 3+ states (as shown by the 104Ru case)

• successfully applied to (among others):

◦ prolate-oblate shape transition in the chain of 186−192Os,194Pt,
C.Y. Wu, Nucl. Phys. A 607 (1996) 178
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Experimental applications and limitations

• this technique works best for transitional nuclei

• it is safest for 0+ states (only 2+ states enter sums)

• for 2+ – problem how to populate 3+ states (as shown by the 104Ru case)

• successfully applied to (among others):

◦ prolate-oblate shape transition in the chain of 186−192Os, 194Pt,
C.Y. Wu, Nucl. Phys. A 607 (1996) 178

◦ non-axial stiff rotors: 168Er, 182,184W,
B. Kotliński,Nucl. Phys. A517 (1990) 365, C.Y. Wu, Nucl. Phys. A533 (1991) 359

◦ quasi-vibrational 104Ru,
J. Srebrny, Nucl. Phys. A 766 (2006) 25

◦ shape coexistence:
◦

70−76Ge, M. Sugawara, Eur. Phys. J. A16 (2003) 409 and ref. therein

◦
96−100Mo, M. Zielińska, Nucl. Phys. A 712 (2002) 3,

K. Wrzosek, PRC 86 (2012) 064305
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