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Abstract

The experimental charge radius values along Cd, Sn, Te, Xe, Ba and Sm isotopic series have been ex-
tracted from isotope shift measurements using different methods to calibrate the electronic factor and mass
shift effects. Static and dynamic charge radii have been calculated in the framework of a microscopic con-
figuration mixing approach on the ground of Hartree–Fock–Bogoliubov solutions obtained with the D1S
Gogny effective nucleon–nucleon interaction. Low-energy spectroscopic observables have also been ob-
tained. The theoretical and experimental results are compared and discussed. It is shown that dynamical
effects must be taken into account especially for γ -soft and weakly deformed nuclei.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The charge radii of nuclei, rc , and their variations along isotopic series provide key informa-
tion on the nuclear matter behaviour. For example, they can reveal magic numbers and bring out
changes in the nuclear deformation between either neighbouring nuclei or different states inside
the same nucleus. They constitute hence one of the basic nuclear properties that any nuclear
model must be able to well describe.
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The most precise nuclear rc values have been obtained by use of the muonic atom spectroscopy
method. They have been determined for almost all elements using the muon factories, but only
for the stable isotopes. The most recent and precise results so obtained have been reviewed by
Fricke et al. [1]. To study the rc evolution through a large number of isotopes, we must also use
the numerous results concerning the mean square charge radius changes, δ〈r2

c〉, yielded by the
optical method and choose the rc value of a stable mass as a reference value.

For the tin isotopes, it was recently shown that the parabolic shape of the rc curve against the
neutron number could be explained by important dynamical effects [2–5]. The purpose of the
present work is to study the role played by these dynamical contributions as the proton number
moves away from N = 50. The data already known [6,7] led us to choose the following elements:
Cd, Sn, Te, Xe, Ba and Sm.

In muonic atom spectroscopy the uncertainty on the extracted values is almost only due to the
nuclear polarization corrections whereas in optical spectroscopy, to deduce the δ〈r2

c〉 values from
the isotope shift measured, one has to determine the electronic factor F of the optical transition
as well as the part of the isotope shift due to the mass difference or mass shift MS. Various ways
are currently used to get the F and MS values, which may provide slightly different slopes of the
δ〈r2

c〉 and rc curves. Therefore, prior to compare nuclear model predictions with the experimental
rc curves, a very careful and critical analysis of the data has to be performed and discussed.
This tricky problem will be widely treated in Section 2. The nuclear model, taking into account
or not the dynamical effects, used in this work will be presented in Section 3. The comparison
between experimental and theoretical results will be shown and discussed in Section 4. Lastly,
the conclusions will be drawn in Section 5.

2. Determination of the experimental charge radii of Cd, Sn, Te, Xe, Ba and Sm nuclei

Laser spectroscopy is the only experimental method giving access, from the isotope shift, to
the change in the mean square charge radius through long isotopic chains including stable and
unstable nuclei. The isotope shift is the displacement of the center of gravity of the hyperfine
spectrum between two neighboring isotopes. When the number of neutrons varies, changes are
induced in the atom, namely in the reduced mass of the nucleus plus electron system, in the
correlations between the electrons and in the charge distribution inside the nucleus giving rise to
the normal mass shift (δνAA′

NMS), the specific mass shift (δνAA′
SMS) and the field shift (δνAA′

FS ). The
mass shift dominates in light nuclei and is small in heavy elements [6]. The normal and specific
mass shifts depend in the same way on the atomic masses:

δνAA′
MS = δνAA′

NMS + δνAA′
SMS = (N + S)

A′ − A

AA′ = M
A′ − A

AA′ .

The normal mass shift is easy to calculate, since N is given by the simple formula: N = νi

1836.1 [8],
where νi is the atomic transition energy. On the other hand, the specific mass shift is very difficult
to calculate. For pure s → p or s2 → sp transitions, it has been shown that |S| � N [8]. But
when d or f electrons are involved in the transition, S can be of the order of 10 × N or more.

The change in the mean square charge radius is related to the field shift by:

δνAA′
FS = F × λAA′ = F × k × δ

〈
r2
c

〉AA′
,

where F is the electronic factor of the atomic transition, λ the nuclear parameter given by:

λ = δ
〈
r2
c

〉AA′ + (C2/C1)δ
〈
r4
c

〉AA′ + (C3/C1)δ
〈
r6
c

〉AA′ + · · ·
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and k a correcting factor calculated using the Cn Seltzer coefficients [9,10]. Usually the F factor is
obtained from semi-empirical calculations using the Goudsmit–Fermi–Segré formula to evaluate
the change of the electronic charge density at the nucleus. Relativistic calculations using Dirac–
Fock or multiconfiguration Dirac–Fock methods are also used to determine F. Results obtained
by these different methods can differ by 10% to 30% [6].

An alternative way to determine both the electronic F factor and the specific mass shift is by
using King plot analysis [11]. In this case, the modified shifts in the optical line under study are
plotted against the modified shifts in another line advisably chosen, for instance corresponding to
a pure and simple configuration for which the specific mass shift can be estimated to be negligible
and the F factor accurately calculated. Such a plot gives a straight line, its intercept is related to
the specific mass shift and its slope equal to the ratio of the F factors.

The King plot analysis is also applied with data obtained from other experimental methods,
such as the X-ray isotope shifts and the change in the mean square charge radius deduced from
electron scattering or muonic experiments. It is worth noting that this type of experiments has
been only performed on stable isotopes since it requires several tens of milligrams of target ma-
terial. Using the muonic isotope shifts is not directly suitable because the difference of muonic
level energy does not depend on δ〈r2〉 but on δ〈rke−αr 〉. In the case of K-ray isotope shifts, the
nuclear charge distribution investigated is the same as in optical isotope shifts but the experimen-
tal errors are too important to calibrate reliably the optical isotope shift measurements. In the
same way, the accuracy obtained for the charge radius in electron scattering experiment is too
low to allow the determination of the F factor and specific mass shift via a King plot analysis.
However, electron scattering measurements give access to the radial dependence of the charge
distribution. This result can be used to extract the charge radius from the very precise and model-
independent Barrett radius obtained in muonic experiments. Such a method using the δ〈r2

c〉 values
resulting from a combined analysis of muonic atom and electron scattering data has been pro-
posed by Fricke et al. to calibrate the optical isotope shift measurements and applied for eight
elements (Ca, Kr, Sr, Zr, Mo, Sm, Gd, Pb) [1]. However, by lack of electron scattering data, this
combined analysis cannot be used for any isotope series. Nevertheless, in principle, muonic ex-
periments give access to the better charge radius values available for the stable nuclei, in spite of
the uncertainty on the calculated nuclear polarization corrections that limits their accuracy. The
compilation made by Fricke et al. summarizes the results from muonic experiments performed
on almost all stable nuclei and provides a consistent set of charge radius values for these stable
isotopes [1]. The isotopic series we are interested in (Cd, Sn, Te, Xe, Ba and Sm), located on
both sides of the magic tin nuclei, have many stable isotopes (8, 10, 8, 9, 7 and 7, respectively).
Thus, we have used the charge radius values of these stable isotopes to calibrate the isotope shift
measurements performed by optical spectroscopy. Our aim is to obtain the most consistent and
reliable charge radius values over long isotopic chains in order to perform very stringent com-
parison with theoretical calculations over a wide range of nuclei. In a first step to estimate the
possible remaining uncertainty of the method, we compare the charge radius values determined
using the calibration on the muonic data with those obtained with the other methods currently
used. The charge radius values obtained from different methods are reported in Tables 1–6 of
Appendix A.

2.1. Cadmium isotopes

We have evaluated the charge radii in three ways. Firstly we started from the δ〈r2
c〉 values

given in Ref. [6]. These values have been obtained from the experimental data of Ref. [12]
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using a factor F (FSE = 3.91 GHz/fm2) determined semi-empirically and we have deduced the
charge radii taking as reference the value of the 114Cd stable isotope known from the Fricke et
al. compilation Ref. [1]. The second estimation has consisted in determining new values for the
electronic factor and the specific mass shift by doing a King plot between the optical isotope
shifts measured for the stable isotopes in the 5s2 1S0 → 5s 5p 3P1 transition at 326.1 nm [6,12]
and the charge radius values reported in Ref. [1]: Fμ = −4.37 ± 0.18 GHz/fm2 and S/N =
2.43 ± 0.35 with k = 0.977. Then we have used these F and S/N values to calculate, from the
102–120Cd isotope shifts of Refs. [6,12], new δ〈r2

c〉 values and the corresponding charge radii
taking the same reference, 114Cd. Lastly the comparison between the experimental isotope shifts
and the δ〈r2

c〉 values extracted from Ref. [1] for the stable nuclei has allowed us to determine
the specific mass shift (S/N = 2.15 ± 0.18) when the value of the electronic F factor obtained
in Dirac–Fock calculations is used (FDF = −4.16 GHz/fm2, Refs. [10,12]). From these δ〈r2

c〉
values we have obtained a third set of rc data taking again as reference rc (114Cd).

2.2. Tin isotopes

The isotope shifts have been measured from A = 110 up to 132 using the 5p2 3P0 → 5p 6s 3P1

transition at 286.3 nm [5,13]. In Ref. [13], the electronic factor has been calculated by Baird
et al. [14] within a semi-empirical approach (FSE = 3.3 ± 0.3 GHz/fm2), a k = 1 value has been
used and the specific mass shift has been evaluated from the δ〈r2

c〉124,116 value obtained from iso-
tope shift measurement of the Kα transition. In Ref. [5], a King plot has been performed between
the optical isotope shift and the muonic δ〈r2

c〉 values measured for the stable isotopes and reported
in Ref. [15], this led to: Fμ1 = 3.30 ± 0.27 GHz/fm2 with k = 0.975 and S/N = −2.33 ± 0.35.
We have obtained a new determination of F and S/N by performing a similar King plot analysis
using the same optical isotope shift values but the muonic δ〈r2

c〉 values reported for the stable
isotopes by Fricke et al.: Fμ2 = 2.04 ± 0.2 GHz/fm2 with k = 0.975 and S/N = −0.78 ± 0.32.
The fourth estimation of the electronic factor, given in Ref. [16] (FDF = 2.39 ± 0.27 GHz/fm2),
has been deduced from a King plot with results from another optical transition for which F was
obtained using Dirac–Fock calculations. The specific mass shift has been evaluated from the
δ〈r2

c〉124,116 value measured from the Kα-transition isotope shift (S/N = −1.04) and a k = 1
value has been used. From these sets of δ〈r2

c〉 data, we have calculated the charge radii taking as
reference the value reported in Ref. [1] for 120Sn, except for the δ〈r2

c〉 values obtained from Fμ1.
In this case, for a consistence purpose, we have used the rc value given in Ref. [15] for 120Sn.

2.3. Tellurium isotopes

The neutron-rich tellurium isotopes have been recently studied by laser spectroscopy using
the 5p4 3P2 → 5p3 6s 3S1 transition at 214.3 nm [17,18]. In this work the electronic factor and
the specific mass shift have been determined by performing a King plot between the preliminary
optical isotope shifts and the δ〈r2

c〉 values obtained from muonic experiment [19]: Fμ1 = 4.66 ±
0.86 GHz/fm2 with k = 0.974 and S/N = −1.89 ± 0.33. Starting from the same optical isotope
shift values we have done a second determination of the electronic factor and specific mass effect
using the muonic δ〈r2

c〉 values reported in Ref. [1]: Fμ2 = 3.78 ± 0.48 GHz/fm2 with k = 0.974
and S/N = −1.73 ± 0.37. Then we have calculated the resulting charge radii taking as reference
the 130Te charge radius in the first case from [19] and in the second case from Ref. [1].
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2.4. Xenon isotopes

The optical isotope shifts have been measured from A = 116 up to 146 in the 5p5 6s [ 3
2 ]2 →

5p5 6p [ 3
2 ]2 transition at 823.2 nm [20]. The δ〈r2

c〉 values have been obtained using the electronic
factor calculated in semi-empirical approach (FSE = −2.32 GHz/fm2 [6]) and assuming the
specific mass shift to be zero with an error of ± the normal mass shift. Using the δ〈r2

c〉 given in
Ref. [20] and taking as reference the 136Xe charge radius reported in Ref. [1] we have calculated
the charge radii from 116Xe up to 146Xe. We have determined new values for the electronic
factor and the specific mass shift by doing a King plot of the optical isotope shifts [20] versus
the δ〈r2

c〉 values reported in Ref. [1]: Fμ = −1.56 ± 0.11 GHz/fm2 with k = 0.972 and S/N =
0.192 ± 0.266. Then we have calculated the corresponding δ〈r2

c〉 from A = 116 up to 146 and
deduced the charge radii taking again as reference the 136Xe charge radius value reported in
Ref. [1].

2.5. Barium isotopes

The optical isotope shifts have been measured from A = 120 up to A = 148 using two tran-
sitions: the 6s2 1S0 → 6s 6s 1P1 transition at 553.6 nm and the BaII D2 line at 455.4 nm (see
the laser spectroscopy studies listed in Ref. [6]). In the following we will concentrate on the
553.6 nm transition because, in this case, the electronic factor has been obtained not only from
semi-empirical approach but also in multiconfiguration Dirac–Fock calculations [10]. We have
used three different methods to estimate the Ba charge radii. Firstly starting with the δ〈r2

c〉
values from Ref. [6], we have calculated the charge radii taking as reference the rc value re-
ported in Ref. [1] for 138Ba. The δ〈r2

c〉 values given in Ref. [6] have been obtained with the
following semi-empirical electronic factor and specific mass shift: FSE = −3.929 GHz/fm2 and
S/N = 0. Secondly we have performed a King plot using the optical isotope shifts measured
for the stable isotopes [22] and the charge radius values obtained from muonic experiments
and reported in Refs. [21] or [1], this led using k = 0.97 to Fμ1 = −3.163 ± 0.144 GHz/fm2

and S/N = −0.707 ± 0.109 or Fμ2 = −3.897 ± 0.189 GHz/fm2 and S/N = 2.649 ± 0.27, re-
spectively. Using the δν values measured from A = 122 to A = 146 in the 553.6 nm transition
[22,23], we have deduced the δ〈r2

c〉 values corresponding to these electronic factors and specific
mass shift effects and then the rc values taking as reference the 138Ba charge radius [1,21]. Fi-
nally we have evaluated the specific mass shift corresponding to the electronic factor obtained
in multiconfiguration Dirac–Fock calculations (FMCDF = −2.996 GHz/fm2 [10]) by comparing
the δν values and the muonic δ〈r2

c〉 values for the stable isotopes: S/N = 0.1 ± 1.1. A new set of
rc data has been obtained taking as reference the charge radius given for 138Ba in Ref. [1].

2.6. Samarium isotopes

Many laser spectroscopy studies have been performed in the samarium isotopes, they have
been summed up in Ref. [6]. The optical isotope shifts have been measured from A = 138 to
145 using the 4f6 6s2 7F2 → 4f6 6s 6p 5G2 transition at 600.42 nm [24] and from A = 146 to
154 using the 4f6 6s2 7F1 → 4f6 6s 6p 7F0 transition at 570.68 nm [25]. The isotope shifts of the
stable isotopes have been performed extensively, in 15 lines of the SmI spectrum including the
570.68 nm [26]. Thus for this transition we could carry out a King plot analysis using the optical
shift and the muonic δ〈r2

c〉 values given either in Refs. [27,28] or in Ref. [1], this led, using
k = 0.963, to Fμ1 = −2.82 ± 0.14 GHz/fm2 and S/N = −16.37 ± 1.84 or Fμ2 = −2.48 ±
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0.23 GHz/fm2 and S/N = −18.79 ± 3.01, respectively. Moreover, for this transition, Fricke et
al. have performed a combined analysis of the optical isotope shifts and of the data obtained from
muonic atom and electron scattering experiments, which led to Fμe− = −3.86 ± 0.86 GHz/fm2

and S/N = 0.4 ± 1.3. In the 600.42 nm transition, only the isotope shift of the 144,147Sm stable
nuclei has been measured, which is insufficient for a calibration using the muonic data. Finally
the charge radius values in Sm have been calculated in four ways. Firstly, we have used the semi-
empirically determined δ〈r2

c〉 values given in Ref. [6] for A = 138–154 and taken as reference the
charge radius of 144Sm reported in Ref. [1]. For A = 144–154, we have evaluated the charge radii
from the isotope shifts measured in the 570.68 nm transition and the F and S/N values resulting
from the King plots performed using either the muonic atom data or the combined analysis. The
charge radius of the reference nucleus, 144Sm, was taken from Ref. [1], except when the muonic
data used for the King plot were those of Refs. [27,28]. In this case, in order to be consistent we
have used the 144Sm rc value reported in Ref. [27].

The charge radius values obtained as indicated above are presented in Fig. 1. Before N = 82
the charge radii obtained using semi-empirical F factors are systematically higher than those
using the F factors determined by a King plot analysis between the optical isotope shifts and
the muonic δ〈r2

c〉 values for the stable isotopes. The contrary is observed after N = 82. However
the scattering of the values is not very important and one can wonder whether the error bars are
underestimated. For instance, in case of Cd, the possible systematic error on δ〈r2

c〉 due to the
uncertainty in the specific mass shift effect and F factor has been estimated and is indicated in
Ref. [12]. Taking into account these systematic errors results in multiplying by a factor of 5 the
error bars in the charge radius as compared with the ones reported in Table 1 column 3, and
makes this radius value set consistent with the two others drawn in Fig. 1.

It is in the Xe isotope series that the larger differences are observed between the charge ra-
dius sets. But the information on the laser-spectroscopy and muonic-atom experiment results is
scanty; in particular the charge radius values from muonic-atom experiment are only available
in the compilation of Fricke et al. [1]. However we can see in Fig. 1 that the differences in
charge radii between the two data sets are less than or around one per cent. On the other hand,
analysing, for different N values the evolution of the charge radius as a function of Z, one can
conclude that the true charge radius values lie somewhere between the values labelled FSE and
those labelled Fμ.

For Sn, Te, Ba and Sm, two charge radius sets are available for the stable isotopes from
muonic-atom experiment, leading to two determinations of the F factor and specific mass shift
effect. One can note that there is a compensation between these two parameters since the charge
radius values obtained over the whole isotope series remain very similar even when the F and
S/N factors are significantly different.

In the following, for the comparison with theory, in a first step we will use the charge radius
values labelled Fμ or Fμ2 in Fig. 1 or Tables 1–6. They present the advantage of consistency
since they have been obtained applying the same method for the determination of the F factor
and specific mass shift effect, using in all cases the charge radii reported for the stable isotopes
in the compilation by Fricke et al. [1]. For 138–143Sm that have not been studied with the same
optical transition than the heavier isotopes, we will use the charge radius values from the data
set labelled FSE. Finally it is worth noting that the table of nuclear charge radii published by
Angeli [29] supports quite well the data sets that we have chosen to compare with the results of
calculations.
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Fig. 1. Experimental charge radius values in the even–even Cd, Sn, Te, Xe, Ba and Sm isotopes (see text).
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3. Microscopic evaluation of nuclear charge radii and spectroscopic properties

A systematic investigation of Cd, Sn, Te, Xe, Ba and Sm isotopic chains has been performed
on the ground of Hartree–Fock–Bogoliubov solutions deduced under triaxial symmetries from
the D1S Gogny effective nucleon–nucleon interaction [30–32]. At first step for each nucleus,
constrained HFB (CHFB) solutions are calculated by expansion of single particle states on
a triaxial harmonic oscillator basis. Involved numerical methods and codes for this purpose are
those described in Ref. [33]. CHFB solutions are mapped against axial q0 = 〈Q̂20〉 and triaxial
q2 = 〈Q̂22〉 components of the mass quadrupole moment. This mapping is as it is usual rewritten
in term of polar Bohr’s variables:

β =
√

5π

3

√
q2

0 + 3q2
2

A(A1/3r0)2
, γ = arctan

√
3
q2

q0
(1)

or their usual Cartesian counterparts (a0 = β cosγ , a2 = β sinγ ). In Eq. (1) which connects
scaled collective variables (β,γ ) with quadrupole moments, the standard liquid drop expression
for the mean radius is employed with r0 = 1.2 fm, A being the particle number.

As known, due to symmetry invariances, this mapping can be restricted to the first sextant
{0 � β < +∞;0 � γ � π

3 }. In practice, the CHFB calculations are performed on a lattice with
typically 80 mesh points in the first sextant with 0 � β � βc using the cutoff value βc = 0.65
which will secure, in present case, the evanescent character of collective wave functions (see
hereafter).

In each mesh point (β, γ ), the neutron ρ
βγ
n (	r ) and proton ρ

βγ
p (	r ) densities associated with

the CHFB solution φβγ give, in particular, the value of neutron and proton point mean square
radius by:

〈
rβγ

k

〉2 = 1

Nk

∫
d3r ρ

βγ

k (	r )r2 with k = n or p (2)

where Np and Nn are the proton and neutron numbers. According to [31] and [34], charge radii
are then written in fm units as:

rβγ
c =

√〈
rβγ
p

〉2 + f
βγ
conv + εn with f

βγ
conv = 3

2

(
B2 − a

)
and εn = −0.12

Nn

Np

(
fm2). (3)

In former expressions, f
βγ
conv carries a proton form factor term (B = 0.65 fm) and a correc-

tion a due to center of mass motion. This correction, known to be small, is evaluated assuming
pure harmonic oscillator wave functions with a = h̄/(mωβγ A) where m is the nucleonic mass
(h̄2/m = 41.47 MeV fm2) and where ωβγ is the oscillator constant value (in MeV/h̄) chosen
in each mesh point to minimize the CHFB energy. Finally, εn is a standard expression of the
contribution to charge radii associated with the neutron electromagnetic properties.

The HFB state—i.e. the solution φβmγm at the minimum of total energy which arises at defor-
mation (β, γ ) = (βm,γm)—defines what will be called hereafter the “static” properties and, in
particular, the charge radius:

rHFB
c = rβmγm

c .

At this step, we have applied a configuration mixing approach in the space spanned by the
CHFB states φβγ and their rotation transforms. The general frame is the generator coordinate
method (GCM) under Gaussian overlap approximation (GOA) for the complete quadrupole col-
lective space i.e. for axial and triaxial quadrupole vibrations together with rotation treated in this
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frame on the same footing. Similar approach has been applied to the description of low-energy
spectroscopy in various regions of the nuclear chart, and in particular in [35] for light Hg iso-
topes. Present approach is identical in its principles to those implemented for the description of
the normal-super deformation (ND-SD) shape coexistence in mercury-lead and actinide regions
[36,37]. Technical details can be found in Ref. [36] and references therein. This approach has
been shown to be able to reproduce main trends for low-energy collective levels in deformed and
transitional nuclei. However, as well known, the considered collective space is not well adapted
to rigid spherical (magic and particularly doubly magic) system, and some evidence of this weak-
ness has thus to be expected in some nuclei of our panel. Here, we will only recall the main steps
which are involved in the method.

(i) Under the GOA approximation, the variational GCM Hill–Wheeler equation in the five
components of the quadrupole tensor {q2m} can be re-written in the intrinsic system under
a Schrödinger form i.e. an Hamiltonian Hcoll which takes the form of the so-called full quadru-
pole collective Bohr Hamiltonian in β , γ , and Euler angles Ω = (θ,ϕ,ψ). Hcoll has analytically
the same form as the Bohr Hamiltonian considered and numerically solved for the first time in
the pioneering work of Ref. [38].

(ii) The Hamiltonian Hcoll involves a kinetic term made with six functions of the deformation,
namely the three moments of inertia {Jk(β, γ )}k (where k refers to the principal axes (k = 1, 2
and 3)) and three mass parameters allowing to built the symmetric vibrational kinetic tensor
{Bαα′(β, γ )}α,α′={β,γ } associated with vibrations in β and γ directions and their coupling. These
ingredients are calculated for each CHFB solution φβγ using the perturbative approach of motion
and linear response theory driving to the so-called Inglis–Belyaev formulas. However, previous
works using self-consistent cranking calculations have driven us to introduce a simple but re-
alistic overall scaling factor on Jk functions to take into account in a simple way the effect of
rotation on the nuclear field (the so-called dynamical Thouless–Valatin contribution).

Under GCM–GOA hypotheses, the potential term V = ECHFB − Ezp of Hcoll carries rota-
tional and vibrational zero point energy contributions which are also evaluated by Inglis–Belyaev
cranking series belonging to the linear response theory. Finally, we have used here as it is the case
for instance in [36] and [37]:

Jk(β, γ ) = 1.32 ∗J Inglis–Belyaev
k (β, γ ), k = 1,2,3, (4)

Bαα′(β, γ ) = B
Inglis–Belyaev
αα′ (β, γ ), α,α′ = {β,γ }, (5)

V (β,γ ) = ECHFB(β, γ ) − E
Inglis–Belyaev
zp (β, γ ). (6)

(iii) The Schrödinger equation is solved numerically using expansion techniques similar to
those explained in great details in [36]. Deduced eigen energies, EI,n ordered by quantum num-
ber n in each block of good angular momentum I , are associated with eigenstates taking the form
of normalized combinations:

Ψ I,n =
∑

Keven�0

A
I,n
K (β, γ )ϕI

MK(Ω) (7)

which carries spreading in deformation variables and K-mixing. In Eq. (7), ϕI
MK(Ω) refers to the

standard combination (see, e.g. [38]) of Wigner rotation matrices for angular momentum I and
its projections ±K and M on the third axis in intrinsic and laboratory frame, respectively.

Here we focus our interest on properties of the ground states. For this state (I = K = 0,
n = 1), the density of probability in collective space ρ0,1(β, γ ) is given by:

ρ0,1(β, γ ) = ∣∣A0,1
(β, γ )

∣∣2
μ(β,γ ) (8)
0
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where μ is the metric involving moments of inertia and mass parameters, in such a way that for
the normalized state, one has:∫

sextant

ρ0,1(β, γ )β dβ dγ = 1. (9)

The associated charge radius, named in what follows “dynamic” or GCM–GOA charge radius
writes:

rGCM–GOA
c =

∫
sextant

ρ0,1(β, γ )rβγ
c β dβ dγ, (10)

where rβγ
c is the local CHFB value defined in Eq. (3). Other ground-state properties as 〈β〉 and

〈γ 〉 are deduced in the same way through the knowledge of the density ρ0,1(β, γ ).
In the panel of nuclei under study, we can isolate three types of typical behavior in the col-

lective space. Potentials energy surfaces (PES) and deduced densities ρ0,1 for rigid or very rigid
spherical nuclei are displayed in Fig. 2 for 98,130Cd nuclei taken as examples. Similar information
for a soft mid-shell nuclei (116Sn) is shown in Fig. 3, whereas a prolate well-deformed behavior
is displayed in Fig. 4 through the 126Ba and 154Sm cases.

Fig. 2. Potential energy surfaces (left-hand side) and densities of probability in the ground state (right-hand side)—see
text—for magic 98Cd (N = 50) and 130Cd (N = 82) nuclei. Equipotential lines are separated by 1 MeV. Vertical scales
for densities ρ0,1 are the same for both nuclei. Maximum value of ρ0,1 is 116 (respectively 228) for 98Cd (respec-
tively 130Cd).
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Fig. 3. Same as Fig. 2 for the mid shell nucleus 116Sn (N = 66). Vertical scale for potential V and density ρ0,1 are the
same as in Fig. 2. Maximum value of ρ0,1 is 88 for this nucleus.

Fig. 4. Same as Fig. 2 for the two prolate well deformed nuclei 126Ba and 154Sm. Vertical scales for potentials V and
densities ρ0,1 are the same as in Fig. 2. Maximum value of ρ0,1 is 65 (respectively 136) for 126Ba (respectively 154Sm).

Hereafter and in the discussion of Section 4, we will also refer to reduced E2 transition prob-
ability values calculated for the first transition in the ground state (gs) band, namely 0+

gs → 2+
gs.

These calculations have been performed under simple hypothesis of uniform charge distribution
in collective model following [38]. That is known to be quite reliable as long as a shape tran-
sition does not occur between the initial and the final states. Qualitatively, one can retain that
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the microscopic charge quadrupole operator, which is non-local in the present collective space,
can be replaced by the corresponding local collective model operator as long as densities in the
initial and final states are high in the same area of the collective space. This is clearly the case
for nuclei under study, and, in particular for the transition 0+

gs → 2+
gs.

To be more explicit on this point, collective model assumption of Ref. [38], means that the
considered charge quadrupole operator acting in the collective space is taken simply as the two
component operator:

Q̂0 = 3

4π
Z

(
r0A

1/3)2
β cosγ, Q̂2′ = 3

4π
Z

(
r0A

1/3)2
β sinγ (11)

with r0 = 1.2 fm.
Under these hypotheses, the reduced E2 transition probability between an initial (I, n) and

a final (I ′, n′) state of our spectrum, writes:

B
(
E2; (I, n) → (I ′, n′)

) = 1

(2I + 1)

∣∣〈I, n‖M(E2)‖I ′n′〉∣∣2
, (12)

where the reduced matrix element, for transitions (0, n) → (2, n′) under present scope writes
after evaluating geometrical coefficients:

〈0, n‖M(E2)‖2, n′〉 = 〈
A

0,n
0

∣∣Q̂0
∣∣A2,n′

0

〉 + 〈
A

0,n
0

∣∣Q̂2′
∣∣A2,n′

2

〉
(13)

with
〈
A

I,n
K

∣∣Q̂m

∣∣AI ′,n′
K ′

〉 =
∫

sextant

A
I,n
K (β, γ )Q̂mA

I,n′
K ′ (β, γ )μ(β, γ )β dβ dγ. (14)

This paper is focused on measurement and evaluation of charge radii. To control the validity
of the present GCM–GOA approach, it is however of some interest to see some results obtained
in this frame for other observables as excitation energy of first levels in the ground state band
(2+

gs,4+
gs) and these E2 transition rates (0+

gs → 2+
gs) discussed above. For all isotopic chains un-

der study, these results are drawn in Fig. 5. The main trends are satisfactorily reproduced for
these quantities. Main discrepancies appear for magic and doubly magic nuclei. The only case
where the B(E2) is over-evaluated do correspond to the magic N = 50 Sn nuclei. This over-
estimation of the collectivity corresponds to a certain inadequation of the considered space as
already mentioned. The very strong effect on excitation energies due to the N = 82 shell closure
is often missed by the calculation. It should be noticed, however, that such approaches under
quasiparticle hypothesis, manage with a spreading in the number of particles. It could not be
very surprising to see a smoothing on excitation energies as function of N in the vicinity of the
violent N = 82 shell closure. The phenomenon is strong and makes the systems with N ±2 quite
different from the system with N neutrons. Keeping in mind that we have to take care around
shell and doubly shell closures, the overall agreement with experimental data which has been
shown demonstrates that the present theoretical description provides reliable gs wave functions
and therefore a convenient ground to study in more detail the question of charge radii.

4. Discussion

The static and dynamic root mean square charge radii calculated within the theoretical ap-
proach described above are displayed in Fig. 6. Following the analysis of Section 2, they are
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Fig. 5. GCM–GOA calculated quantities (full lines and triangles) are compared with experimental values (full dots with
error bars for B(E2) values) in each isotopic chain from successively Cd (upper part), Sn, Te, Xe, Ba to Sm (lower
part). This comparison is displayed for transition probabilities B(E2;0+

gs → 2+
gs) (left column), excitation energy E(2+

gs)

of the first excited state (central column) and the ratio of excitation energies E(4+
gs)/E(2+

gs) as a measurement of the
vibrational–rotational character of the spectrum. The experimental data have been taken from Refs. [39,40].
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Fig. 6. Experimental and calculated charge radii in even–even Cd, Sn, Te, Xe, Ba and Sm isotopes. The experimental rc
values given in Ref. [1] for even–even nuclei are shown as open triangles.

compared in this figure with the rc values we deduced from the optical isotope shift measure-
ments by a King plot analysis performed using the rc values known for the stable isotopes either
from muonic atom experiments or from a combined analysis.
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Fig. 7. Same as Fig. 2 for 116–118Te. Vertical scales for potentials V and densities ρ0,1 are the same as in Fig. 2.
Maximum value of ρ0,1 is 38 (respectively 45) for 116Te (respectively 118Te).

For the Cd, Sn, Te and Sm isotopic series, we must note that the best agreement is clearly
obtained between the experimental data and the dynamic theoretical predictions. However for
the nuclei having a neutron number very close to a magic one (N = 50 or 82), the agreement
can become better with the static calculations; this is the case for the doubly magic 132Sn, magic
134Te, Cd with N < 58 and Sm with 76 < N < 84.

On the other hand, for the Xe and Ba isotopic series, some of the rc values are rather in best
agreement with these given by the static predictions whereas the curves have a smooth behaviour
similar to this predicted by the dynamic calculations. One can note, in particular, that the jumps
found in the rc static curves never exist in the experimental ones. The jumps happen close to
the neutron mid-shell N = 66; namely between N = 64 and 66 for the Te nuclei and between
N = 70 and 72 for the Xe and Ba ones. The potential energy surfaces and the corresponding
densities of 116,118Te (N = 64 and N = 66) and 124,126Xe (N = 70 and N = 72) are shown
in Figs. 7 and 8. These potential energy surfaces are smooth with a very large γ valley and
without any deep well, which clearly indicates that the four nuclei are γ -soft. In such a case,
the HFB solution localized at the minimum is a poor description of the system which strongly
spreads out on the deformation space. This means that the deduced static deformation is then
not valuable. For example, the potential energy surfaces of 116Te and 118Te are very similar but
a small minimum is visible at β = 0.35 for 116Te whereas no minimum appears for 118Te. This
very small difference could explain the static rc curve jump that is found between 116Te and
118Te because of the obvious strong influence of the deformation on the rc value. The static and
dynamic deformation parameters are shown in Fig. 9. We can see that the static deformation
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Fig. 8. Same as Fig. 2 for 124–126Xe. Vertical scales in potentials V and densities ρ0,1 are the same as in Fig. 2. Maximum
value of ρ0,1 is 46 (respectively 59) for 124Xe (respectively 126Xe).

parameter β = 0.35 for 116Te is large while it is only β = 0.17 for 118Te. In the same way the
static rc curve jumps calculated at N = 70 for the Xe and Ba isotopic series are due to sudden
changes of the deformation parameters (see Fig. 9). We can conclude that the local irregularities
found for the rc curves with the static calculations are artefacts that can come out for a soft
nucleus for which the potential energy surface is very smooth.

Such artefacts do not exist in dynamic calculations since the density is determined taking into
account the shape of the whole potential energy surface. Thus, for example, the densities calcu-
lated for 116Te and 118Te are very similar, they spread out on a large part of the collective space,
from β = 0.1 to 0.4. In such cases, good predictions can only be obtained by use of dynamical
calculations, taking into account long range correlations. So, except for nuclei situated very close
to the magic numbers, the dynamic approach is expected to provide the best description.

Now, it remains to understand why the static rc values seem to be in a better agreement with
the experimental rc values than the dynamic ones for the Xe and Ba isotopic series. Is this due to
the calculation quality or to the experimental determination? To seek to answer the first question,
it is possible to estimate the calculation quality by having a look again at the Fig. 5 where some
other experimental and predicted spectroscopic properties (B(E2),E(2+),E(4+)/E(2+)) are
compared. The agreement between predicted and experimental results is at least as good for the
Xe and Ba isotopic series as for the other ones. The agreement is even particularly excellent
for the Ba nuclei. The calculation quality does not seem, hence, to be called in question for Xe
and Ba nuclei. As for the second question, we have to remind that the larger difference between
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Fig. 9. Theoretical (HFB and GCM–GOA) deformation parameter β for the ground state against the neutron number N

in even–even Cd, Sn, Te, Xe, Ba and Sm isotopes.

the various experimental determinations has been obtained for the Xe and Ba isotopic series (see
Fig. 1). Moreover, some reasons of uncertainty in the rc determination in the Xe isotopic series
have been stressed in Section 2. So, for Xe and Ba nuclei, we compare in Fig. 10 the rc val-
ues obtained with dynamic calculations with the two sets of data given by the semi-empirical
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Fig. 10. For Xe (left-hand side) and Ba (right-hand side) nuclei, charge radii deduced from semi-empirical method (open
squares) and with the King plot on the ground of muonic atom results (full dots) are compared with dynamical charge
radii provided by the GCM–GOA approach (full line).

method (FSE) and the King plot determination (Fμ2) using the muonic atom results. The best
agreement is obviously obtained with the data set semi-empirically determined. It is worth not-
ing that the muonic rc values of the stable isotopes (reported as open triangle in Fig. 6) used
to perform the King plot analysis, are all located close to the magic neutron number N = 82
where the rc values are almost constant and consequently where the mean square charge radius
changes are very small. In these particular conditions the F value can be not enough precisely
determined to get the right rc values for the nuclei located far away from the magic number.
Moreover, the muonic rc values reported in the Fricke table (Ref. [1]) for the stable Xe and Ba
nuclei have been corrected for nuclear polarization effects assuming a spherical nuclear shape
whereas for the lightest isotopes a deformation already exists. This approximation could also
contribute to increase the uncertainty on the F value. All of these facts show the limit of the
method. For these critical cases it is very clear that a combined analysis as that used for the Sm
nuclei, is absolutely necessary to get valuable results to be compared with theoretical predic-
tions.

5. Conclusion

In this work, the rc values along the Cd, Sn, Te, Xe, Ba and Sm isotopic series have been
obtained using mainly the muonic atom and optical spectroscopy results. Among the various
methods employed to determine the electronic factor F and the Specific over Normal mass shift
S/N , the King plot analysis using the rc values extracted for the stable isotopes from muonic
atom experiments leads as expected to the most accurate rc values. However, this method seems
to reach its limits in cases where the reference stable isotopes are close to a magic number and
drive therefore a low slope of the rc curve as function of the neutron number. This has been
shown in Xe and Ba isotopic chains. In such cases, a combined analysis would be essential but
is unfortunately unavailable up to now.

The excellent agreement found between the experimental data and dynamical GCM–GOA
calculations for Cd Sn Te isotopes has shown that a theoretical approach must take into account
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long range correlations especially for γ -soft and weakly deformed nuclei. Of course in cases of
well deformed nuclei, as Sm, the static and dynamic deformations are similar and lead to almost
the same rc values. In all the isotopic series under study, the low-energy spectroscopy is well
reproduced by GCM–GOA calculations. In particular, this is the case for the Xe and Ba chains.
In these nuclei, the GCM–GOA rc values are thus expected to be also in good agreement with
the experimental values. The fact that the dynamical charge radii are in better agreement with the
experimental rc values obtained using the semi-empirical FSE factor than with those calculated
using the muonic Fμ factor supports the limitation of the Fμ determinations evocated above for
the Xe and Ba nuclei.

Appendix A

Table 1
Charge radii (in fm) for Cd isotopes

A N FSE
a Fμ

b FDF
c HFB GCM–GOA

98 50 4.4354 4.4614
100 52 4.4487 4.4684
102 54 4.5022 ± 0.0058 4.4763 ± 0.0063 4.4724 ± 0.0031 4.4709 4.4939
103 55 4.5140 ± 0.0056 4.4904 ± 0.0057 4.4869 ± 0.0031
104 56 4.5285 ± 0.0062 4.5071 ± 0.0053 4.5040 ± 0.0039 4.5091 4.5162
105 57 4.5364 ± 0.0048 4.5174 ± 0.0046 4.5147 ± 0.0030
106 58 4.5517 ± 0.0010 4.5337 ± 0.0050 4.5324 ± 0.0026 4.5308 4.5362
107 59 4.5575 ± 0.0042 4.5428 ± 0.0037 4.5409 ± 0.0029
108 60 4.5673 ± 0.0010 4.5541 ± 0.0039 4.5531 ± 0.0022 4.5457 4.5545
109 61 4.5689 ± 0.0054 4.5585 ± 0.0030 4.5575 ± 0.0044
110 62 4.5822 ± 0.0010 4.5736 ± 0.0029 4.5730 ± 0.0018 4.5587 4.5735
111 63 4.5845 ± 0.0010 4.5776 ± 0.0103 4.5778 ± 0.0016
111m 63 4.5832 ± 0.0119 4.5784 ± 0.0025 4.5767 ± 0.0111
112 64 4.5969 ± 0.0034 4.5926 ± 0.0019 4.5924 ± 0.0029 4.5777 4.5929
113 65 4.5993 ± 0.0010 4.5954 ± 0.0076 4.5972 ± 0.0012
113m 65 4.5991 ± 0.0084 4.5975 ± 0.0016 4.5950 ± 0.0083
114 66 4.6100 ± 0.0010 4.6100 ± 0.0010 4.6100 ± 0.0010 4.5991 4.6066
115 67 4.6125 ± 0.0059 4.6148 ± 0.0058 4.6149 ± 0.0060
115m 67 4.6133 ± 0.0023 4.6148 ± 0.0025 4.6156 ± 0.0024
116 68 4.6202 ± 0.0010 4.6245 ± 0.0018 4.6246 ± 0.0014 4.6141 4.6184
118 70 4.6235 ± 0.0034 4.6320 ± 0.0044 4.6325 ± 0.0040 4.623 4.6305
120 72 4.6283 ± 0.0055 4.6408 ± 0.0070 4.6416 ± 0.0064 4.6182 4.6397
122 74 4.6301 4.6489
124 76 4.6438 4.6595
126 78 4.6548 4.6675
128 80 4.6652 4.6766
130 82 4.6751 4.6945
132 84 4.6887 4.6991
134 86 4.702 4.7178
136 88 4.7199 4.7372

a δ〈r2
c 〉 values from Ref. [6] and rc (114Cd) from Ref. [1]. b F = −4.37 ± 0.18 GHz/fm2, S/N = 2.43 ± 0.35,

k = 0.977 (see text), IS taken from Ref. [12] and rc (114Cd) from Ref. [1]. c F from Dirac–Fock calculations [10,12],
S/N = 2.15 ± 0.18, k = 0.977 (see text), IS taken from Ref. [12] and rc (114Cd) from Ref. [1].
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Table 2
Charge radii (in fm) for Sn isotopes

A N FSE
a Fμ1

b Fμ2
c FDF

d HFB GCM–GOA

100 50 4.469 4.5033
102 52 4.4823 4.5034
104 54 4.497 4.5248
106 56 4.5147 4.5467
108 58 4.5337 4.5653
110 60 4.5860 ± 0.0028 4.5801 ± 0.0083 4.5748 ± 0.0115 4.5833 ± 0.0088 4.5574 4.5828
111 61 4.5916 ± 0.0027 4.5860 ± 0.0074 4.5804 ± 0.0102 4.5884 ± 0.0082
112 62 4.6013 ± 0.0022 4.5961 ± 0.0064 4.5928 ± 0.0087 4.5993 ± 0.0070 4.5763 4.6001
113 63 4.6077 ± 0.0021 4.6028 ± 0.0059 4.5999 ± 0.0081 4.6057 ± 0.0062
114 64 4.6154 ± 0.0018 4.6108 ± 0.0048 4.6091 ± 0.0065 4.6139 ± 0.0053 4.5928 4.6171
115 65 4.6203 ± 0.0017 4.6160 ± 0.0042 4.6138 ± 0.0057 4.6183 ± 0.0048
116 66 4.6295 ± 0.0014 4.6256 ± 0.0032 4.6257 ± 0.0042 4.6287 ± 0.0037 4.6084 4.6301
117 67 4.6347 ± 0.0012 4.6310 ± 0.0026 4.6309 ± 0.0034 4.6335 ± 0.0031
117m 67 4.6343 ± 0.0013 4.6306 ± 0.0028 4.6303 ± 0.0038 4.6330 ± 0.0031
118 68 4.6429 ± 0.0010 4.6396 ± 0.0017 4.6413 ± 0.0021 4.6427 ± 0.0021 4.6229 4.6451
119 69 4.6475 ± 0.0008 4.6444 ± 0.0012 4.6458 ± 0.0015 4.6468 ± 0.0017
120 70 4.6550 ± 0.0006 4.6522 ± 0.0006 4.6550 ± 0.0006 4.6550 ± 0.0006 4.6362 4.6573
121 71 4.6595 ± 0.0008 4.6570 ± 0.0013 4.6594 ± 0.0015 4.6591 ± 0.0011
121m 71 4.6589 ± 0.0008 4.6563 ± 0.0012 4.6584 ± 0.0014 4.6583 ± 0.0010
122 72 4.6658 ± 0.0010 4.6635 ± 0.0023 4.6668 ± 0.0031 4.6657 ± 0.0020 4.651 4.6693
123 73 4.6694 ± 0.0012 4.6673 ± 0.0025 4.6696 ± 0.0032 4.6685 ± 0.0021
124 74 4.6755 ± 0.0013 4.6737 ± 0.0035 4.6770 ± 0.0047 4.6751 ± 0.0030 4.6622 4.6805
125 75 4.6791 ± 0.0016 4.6774 ± 0.0038 4.6798 ± 0.0052 4.6779 ± 0.0032
125m 75 4.6775 ± 0.0040 4.6758 ± 0.0037 4.6773 ± 0.0049 4.6757 ± 0.0030
126 76 4.6846 ± 0.0051 4.6832 ± 0.0045 4.6862 ± 0.0060 4.6836 ± 0.0039 4.6736 4.6911
127 77 4.6878 ± 0.0056 4.6866 ± 0.0050 4.6888 ± 0.0067 4.6862 ± 0.0041
127m 77 4.6858 ± 0.0053 4.6845 ± 0.0049 4.6854 ± 0.0065 4.6833 ± 0.0038
128 78 4.6930 ± 0.0063 4.6920 ± 0.0056 4.6946 ± 0.0076 4.6914 ± 0.0047 4.6844 4.6992
129 79 4.6941 ± 0.0065 4.6933 ± 0.0060 4.6938 ± 0.0080 4.6911 ± 0.0047
129m 79 4.6969 ± 0.0069 4.6962 ± 0.0061 4.6984 ± 0.0081 4.6950 ± 0.0051
130 80 4.7023 ± 0.0077 4.7018 ± 0.0067 4.7047 ± 0.0090 4.7006 ± 0.0057 4.6946 4.7072
130m 80 4.6991 ± 0.0073 4.6985 ± 0.0065 4.6994 ± 0.0086 4.6962 ± 0.0052
131 81 4.7080 ± 0.0086 4.7077 ± 0.0073 4.7115 ± 0.0100 4.7067 ± 0.0064
131m 81 4.7108 ± 0.0090 4.7105 ± 0.0074 4.7161 ± 0.0102 4.7105 ± 0.0068
132 82 4.7093 ± 0.0088 4.7091 ± 0.0075 4.7111 ± 0.0101 4.7067 ± 0.0064 4.7043 4.7318
134 84 4.7179 4.7285
136 86 4.7311 4.7476

a F, SMS and k from Ref. [13], IS from Refs. [5,13] and rc (120Sn) from Ref. [1]. b F, S/N and k from Ref. [5], IS
from Refs. [5,13] and rc (120Sn) from Ref. [15]. c F = 2.04 ± 0.2 GHz/fm2, S/N = −0.78 ± 0.32 and k = 0.975 (see
text), IS from Refs. [5,13] and rc (120Sn) from Ref. [1]. d F from Dirac–Fock calculations, S/N and k from Ref. [16],
IS from Refs. [5,13] and rc (120Sn) from Ref. [1].

Table 3
Charge radii (in fm) for Te isotopes

A N Fμ1
a Fμ2

b HFB GCM–GOA

102 50 4.5293 4.5476
104 52 4.5716 4.5634
106 54 4.576 4.5818
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Table 3 (continued)

A N Fμ1
a Fμ2

b HFB GCM–GOA

108 56 4.597 4.6014
112 60 4.6358 4.6445
114 62 4.6838 4.6709
116 64 4.7234 4.6908
118 66 4.6777 4.701
120 68 4.7046 ± 0.0076 4.7020 ± 0.0073 4.6865 4.7048
122 70 4.7112 ± 0.0060 4.7098 ± 0.0056 4.6985 4.7111
123 71 4.7127 ± 0.0056 4.7114 ± 0.0051
124 72 4.7183 ± 0.0045 4.7180 ± 0.0042 4.7082 4.7182
125 73 4.7201 ± 0.0041 4.7200 ± 0.0036
126 74 4.7250 ± 0.0031 4.7258 ± 0.0028 4.7109 4.7272
128 76 4.7319 ± 0.0018 4.7339 ± 0.0016 4.722 4.7371
130 78 4.7388 ± 0.0005 4.7420 ± 0.0005 4.7326 4.7455
132 80 4.7456 ± 0.0029 4.7500 ± 0.0033 4.7428 4.7539
134 82 4.7517 ± 0.0041 4.7571 ± 0.0045 4.7525 4.7659
136 84 4.7729 ± 0.0077 4.7828 ± 0.0075 4.7897 4.7803

a F = 4.66 ± 0.86 GHz/fm2, S/N = −1.89 ± 0.33 and k = 0.974 (see text), IS from Refs. [17,18] and rc (130Te) from
Ref. [19]. b F = 3.78 ± 0.48 GHz/fm2, S/N = −1.73 ± 0.37 and k = 0.974 (see text), IS from Refs. [17,18] and rc
(130Te) from Ref. [1].

Table 4
Charge radii (in fm) for Xe isotopes

A N FSE
a Fμ

b HFB GCM–GOA

114 60 4.7697 4.7136
116 62 4.7362 ± 0.0149 4.7075 ± 0.0073 4.7759 4.7408
118 64 4.7508 ± 0.0127 4.7291 ± 0.0057 4.7622 4.7571
120 66 4.7610 ± 0.0117 4.7439 ± 0.0046 4.775 4.7698
122 68 4.7677 ± 0.0095 4.7537 ± 0.0039 4.8016 4.7707
124 70 4.7737 ± 0.0085 4.7624 ± 0.0032 4.8187 4.7733
126 72 4.7788 ± 0.0064 4.7699 ± 0.0023 4.7724 4.7756
128 74 4.7831 ± 0.0053 4.7760 ± 0.0019 4.7729 4.7799
129 75 4.7831 ± 0.0043 4.7760 ± 0.0019
130 76 4.7868 ± 0.0043 4.7813 ± 0.0015 4.7798 4.7867
131 77 4.7861 ± 0.0032 4.7802 ± 0.0015
132 78 4.7902 ± 0.0022 4.7863 ± 0.0011 4.7812 4.7926
134 80 4.7936 ± 0.0014 4.7911 ± 0.0007 4.7869 4.7981
136 82 4.7990 ± 0.0001 4.7990 ± 0.0001 4.7961 4.8117
137 83 4.8099 ± 0.0011 4.8149 ± 0.0014
138 84 4.8254 ± 0.0022 4.8373 ± 0.0029 4.8247 4.8221
139 85 4.8363 ± 0.0032 4.8531 ± 0.0041
140 86 4.8494 ± 0.0042 4.8721 ± 0.0053 4.8561 4.8464
141 87 4.8602 ± 0.0052 4.8878 ± 0.0065
142 88 4.8724 ± 0.0063 4.9055 ± 0.0079 4.8637 4.869
143 89 4.8810 ± 0.0073 4.9178 ± 0.0085
144 90 4.8927 ± 0.0083 4.9346 ± 0.0097 4.8814 4.889
146 92 4.9123 ± 0.0103 4.9628 ± 0.0117 4.9634 4.9141

a δ〈r2
c 〉 from Ref. [20] and rc (136Xe) from Ref. [1]. b F = −1.56 ± 0.11 GHz/fm2, S/N = 0.192 ± 0.266 and

k = 0.972 (see text), IS from Ref. [20] and rc (136Xe) from Ref. [1].
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Table 5
Charge radii (in fm) for Ba isotopes

A N FSE
a Fμ1

b Fμ2
c FMCDF

d HFB GCM–GOA

116 60 4.8272 4.8007
118 62 4.8405 4.8249
120 64 4.8119 ± 0.0053 4.8359 4.832
121 65 4.8200 ± 0.0051
122 66 4.8179 ± 0.0048 4.8116 ± 0.0016 4.7966 ± 0.0032 4.8095 ± 0.0110 4.8031 4.8402
123 67 4.8162 ± 0.0046 4.8090 ± 0.0016 4.7963 ± 0.0031 4.8073 ± 0.0101
124 68 4.8209 ± 0.0043 4.8165 4.8417
125 69 4.8202 ± 0.0040 4.8132 ± 0.0015 4.8033 ± 0.0027 4.8128 ± 0.0087
126 70 4.8243 ± 0.0038 4.8180 ± 0.0014 4.8089 ± 0.0025 4.8184 ± 0.0082 4.8361 4.8266
127 71 4.8226 ± 0.0035 4.8154 ± 0.0013 4.8085 ± 0.0023 4.8163 ± 0.0073
128 72 4.8275 ± 0.0032 4.8212 ± 0.0012 4.8149 ± 0.0021 4.8228 ± 0.0068 4.8184 4.8277
129 73 4.8268 ± 0.0030 4.8200 ± 0.0011 4.8155 ± 0.0020 4.8221 ± 0.0061
129m 73 4.8255 ± 0.0030 4.8183 ± 0.0012 4.8141 ± 0.0021 4.8203 ± 0.0061
130 74 4.8301 ± 0.0027 4.8237 ± 0.0010 4.8202 ± 0.0017 4.8265 ± 0.0054 4.8194 4.8304
131 75 4.8294 ± 0.0025 4.8225 ± 0.0010 4.8208 ± 0.0016 4.8257 ± 0.0047
131m 75 4.8291 ± 0.0025 4.8220 ± 0.0010 4.8204 ± 0.0016 4.8252 ± 0.0047
132 76 4.8320 ± 0.0022 4.8254 ± 0.0009 4.8247 ± 0.0014 4.8292 ± 0.0041 4.825 4.8332
133 77 4.8303 ± 0.0020 4.8228 ± 0.0009 4.8241 ± 0.0013 4.8270 ± 0.0035
133m 77 4.8316 ± 0.0020 4.8244 ± 0.0008 4.8254 ± 0.0013 4.8287 ± 0.0034
134 78 4.8339 ± 0.0017 4.8265 ± 0.0007 4.8287 ± 0.0011 4.8314 ± 0.0028 4.8265 4.8378
135 79 4.8313 ± 0.0016 4.8227 ± 0.0009 4.8271 ± 0.0011 4.8279 ± 0.0022
135m 79 4.8335 ± 0.0014 4.8261 ± 0.0007 4.8298 ± 0.0010 4.8314 ± 0.0022
136 80 4.8350 ± 0.0011 4.8273 ± 0.0006 4.8323 ± 0.0008 4.8332 ± 0.0016 4.8285 4.8403
137 81 4.8331 ± 0.0009 4.8246 ± 0.0007 4.8316 ± 0.0008 4.8307 ± 0.0010
137m 82 4.8394 ± 0.0004 4.8329 ± 0.0004 4.8383 ± 0.0005 4.8395 ± 0.0009
138 82 4.8390 ± 0.0004 4.8320 ± 0.0004 4.8390 ± 0.0004 4.8390 ± 0.0004 4.8373 4.8541
139 83 4.8517 ± 0.0012 4.8481 ± 0.0012 4.8534 ± 0.0011 4.8564 ± 0.0011
140 84 4.8676 ± 0.0022 4.8684 ± 0.0021 4.8713 ± 0.0020 4.8782 ± 0.0017 4.8674 4.8634
141 85 4.8792 ± 0.0030 4.8829 ± 0.0027 4.8845 ± 0.0026 4.8940 ± 0.0023
142 86 4.8929 ± 0.0041 4.9002 ± 0.0035 4.8998 ± 0.0034 4.9126 ± 0.0028 4.8792 4.8889
143 87 4.9055 ± 0.0049 4.9161 ± 0.0043 4.9140 ± 0.0041 4.9297 ± 0.0035
144 88 4.9195 ± 0.0056 4.9338 ± 0.0051 4.9297 ± 0.0048 4.9488 ± 0.0041 4.9115 4.9128
145 89 4.9297 ± 0.0063 4.9466 ± 0.0056 4.9413 ± 0.0054 4.9626 ± 0.0046
146 90 4.9424 ± 0.0071 4.9625 ± 0.0063 4.9555 ± 0.0061 4.9797 ± 0.0051 4.9263 4.9414
148 92 4.9660 ± 0.0086 5.0029 4.9752

a δ〈r2
c 〉 from Ref. [6] and rc (138Ba) from Ref. [1]. b F = −3.163 ± 0.144 GHz/fm2, S/N = −0.707 ± 0.109

and k = 0.97 (see text), IS from Ref. [22] and rc (138Ba) from Ref.[21]. c F = −3.897 ± 0.189 GHz/fm2, S/N =
2.649 ± 0.27 and k = 0.97 (see text), IS from Ref. [22] and rc (138Ba) from Ref. [1]. d F from multiconfiguration
Dirac–Fock calculations [10], S/N = 0.1 ± 1.1 and k = 0.97 (see text), IS from Ref. [22] and rc (138Ba) from Ref. [1].

Table 6
Charge radii (in fm) for Sm isotopes

A N FSE
a Fμ1

b Fμ2
c Fμe− d HFB GCM–GOA

136 74 5.0248 4.9716
138 76 4.9564 ± 0.0071 4.9633 4.9599
139 77 4.9521 ± 0.0071
140 78 4.9450 ± 0.0071 4.9554 4.9578
141 79 4.9447 ± 0.0078
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Table 6 (continued)

A N FSE
a Fμ1

b Fμ2
c Fμe− d HFB GCM–GOA

141 79 4.9497 ± 0.0071
142 80 4.9484 ± 0.0069 4.939 4.953
143 81 4.9447 ± 0.0071
144 82 4.9490 ± 0.0060 4.9520 ± 0.0060 4.9490 ± 0.0060 4.9490 ± 0.0060 4.9462 4.9637
145 83 4.9614 ± 0.0067 4.9636 ± 0.0076 4.9608 ± 0.0086 4.9637 ± 0.0094
146 84 4.9758 ± 0.0070 4.9789 ± 0.0086 4.9768 ± 0.0106 4.9810 ± 0.0132 4.9583 4.9736
147 85 4.9857 ± 0.0088 4.9867 ± 0.0095 4.9843 ± 0.0123 4.9927 ± 0.0158
148 86 5.0010 ± 0.0086 5.0035 ± 0.0106 5.0022 ± 0.0145 5.0110 ± 0.0198 4.9893 5.0034
149 87 5.0101 ± 0.0088 5.0104 ± 0.0115 5.0086 ± 0.0162 5.0218 ± 0.0222
150 88 5.0312 ± 0.0090 5.0375 ± 0.0129 5.0382 ± 0.0190 5.0473 ± 0.0278 5.0381 5.0373
151 89 5.0471 ± 0.0098 5.0560 ± 0.0141 5.0580 ± 0.0213 5.0664 ± 0.0319
152 90 5.0730 ± 0.0096 5.0916 ± 0.0157 5.0971 ± 0.0247 5.0979 ± 0.0387 5.1125 5.0964
153 91 5.0825 ± 0.0060 5.0995 ± 0.0166 5.1049 ± 0.0262 5.1091 ± 0.0412
154 92 5.0956 ± 0.0098 5.1137 ± 0.0176 5.1198 ± 0.0282 5.1248 ± 0.0446 5.1215 5.1176

a δ〈r2
c 〉 from Ref. [6] and rc (144Sm) from Ref. [1]. b F = −2.82 ± 0.14 GHz/fm2, S/N = −16.37 ± 1.84 and k =

0.963 (see text), IS from Ref. [25] and rc (144Sm) from Ref. [27]. c F = −2.48 ± 0.23 GHz/fm2, S/N = −18.79 ±
3.01 and k = 0.963 (see text), IS from Ref. [25] and rc (144Sm) from Ref. [1]. d F and S/N from combined analysis [1]
and rc (144Sm) from Ref. [1].
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