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Abstract. The recent developments of the dynamic deformation model (DDM) make it readily 
applicable to a wide range of nuclei. We report a study of the even-mass tellurium isotopes 
from N =  68 to the closed neutron shell at N =  82. Within this region there is experimental 
evidence for nuclei with the characteristics of vibrational, rotational or y-unstable level 
sequences. We show that the model is well able to account for these features as typified by 
level energies, electric quadrupole moments and y a y  transition probabilities across this 
region when the only parameter which changes is the neutron number. For comparison the 
experimental data were also fitted to IBM-2 and the results from these fits are in general in good 
agreement with those from the DDM. 

1. Introduction 

The even-mass tellurium isotopes (Z= 52) are part of an interesting region beyond the 
closed proton shell at Z=50 where the level structure has resisted detailed theoretical 
understanding. Although these nuclei were thought to be vibrational, the comparable 
strengths of the 2;-2; and the 2i-0: transitions in many isotopes and the systematic 
variation of the 0' level energy provides a clue suggesting that they might have a 
transitional character. Moreover, most of the measured quadrupole moments of the 2 
states are non-zero and some are quite large [ l ,  21 with values that are comparable in 
magnitude with those of rotational nuclei. The early study of the collective potential-energy 
surface and nuclear structure of 124Te, for example by Gneuss and Greiner [3], excluded a 
rotational behaviour since the level spectrum does not obey the 1(1 + 1) rule. A vibrational 
character was also excluded for this nucleus by the absence of a 0' level in the energy 
region of the two-phonon triplet. The y independence of the potential-energy surface and 
level structure of some tellurium, xenon and barium isotopes were predicted at the same 
time by the Frankfurt group [4] and these features have been supported by several 
experimental and theoretical studies of 124Te [5-71 and the recent identification of 
y-unstable xenon isotopes [ 81. The present investigation of the tellurium isotopes, 
N=68-82, mainly by the dynamic deformation model [9] is a part of a wider study 
which includes selenium, xenon and barium isotopes [ 10-121. 

The dynamic deformation model has as its starting point the spherical shell model of 
Mayer and Jensen [13], in which the single-particle level energies are taken from the 
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spectra of odd-A nuclei with one particle or hole outside a closed shell. These energies and 
the pairing strength are given a smooth dependence on N and Z so that there are no free 
parameters to be adjusted when the model is applied to any nucleus. Quadrupole 
deformations are introduced using the Rainwater [ 141 method. The potential energy of the 
deformation is obtained using the droplet model of Myers and Swiatecki [ 151 with a shell 
correction [ 161 and again there is only N,  Z dependence. The nine collective variables (five 
quadrupole, neutron and proton energy gaps, and neutron and proton Fermi energies) are 
then treated by a time-dependent method introduced by Kumar [9]. The same 
Hamiltonian, operators and parameters are used for all even-even nuclei and the results 
for any particular nucleus are obtained specifying only N and 2. 

The interacting proton-neutron boson model [ 171 IBM-2 was also applied to the same 
range of tellurium isotopes. We have used the same parameters as reference [ 181 to fit the 
energy while we estimated values for the effective charges e, and e, in a way that will be 
discussed in 0 2.4. 

2. The dynamic deformation model 

A full description of the DDM is given in reference [9] and references therein. Here we 
present only the results of our application of the new version [7] of the DDM to the 
tellurium isotopes. 

Although the DDM has been applied to selected even-even nuclei ranging from light to 
heavy elements to study the gross feature of the collective spectra without any fitting 
parameters, more detailed systematic studies along a given chain of isotopes have not been 
carried out. Thus our analysis of tellurium isotopes represents a sensitive test of the DDM to 
discover if it contains the necessary mechanisms and has the sensitivity to describe in detail 
the changes in collective features of a wide range of isotopes. 

2.1. The potential-energy surface 

In figure 1 we define the limits of the geometrical picture of quadrupole oscillations in 
nuclei used in the DDM to describe the behaviour of the potential-energy surface [ 191. They 
are also labelled with their corresponding IBM representations [20]. In addition a typical 
axial plot ( y = O  prolate and y=60°, oblate) of the potential energy for each limit is also 
shown. 

The potential-energy surfaces for the N =  70, 74,82 isotopes are given in figure 2 and 
the plots of the potential for y = 0, 30 and 60' against deformation ,f3 are given in figures 3 
and 4. Both 12'Te and lZ4Te have well defined minima at /3=0.2 when y=O'. However the 
form of the potential is quite different for these two nuclei as may be seen from figure 5, 
which shows a plot of the potential as a function of y for constant p. The axial (y=Oo, or 
y =  60') plots of the potential energy for N =  82, 80, 78 76 and 72 isotopes which are used 
to construct the basic properties of the nuclear shape are shown in figure 6. 

We shall begin our discussion with the N = 8 2  nucleus and continue to the lighter 
isotopes. The potential-energy function V(p,  y )  gives circular contours, V(p,  y )  -p2 ,  which 
are exactly what we expect from the model for a nucleus close to a doubly closed shell. 
The potential shape of this nucleus is that of a harmonic oscillator with a minimum 
in the potential at p=O. In the case of the N = 8 0  isotope a shallow minimum of 
V(p,  y )  = 0.35 MeV appears at p = 0.05 and y = 0, but unexpectedly a deep minimum of 
V(p,  y ) =  7.9 MeV occurs on the oblate axis at p=O.O9. This deep minimum is surprising 
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Figure 1. Four potentials used in the microscopic models are shown in a simplified form and 
their typical axial plots with limiting symmetries in the IBA model. The fifth type of the 
potential corresponds to an oblate rotor with the minimum at y-60'. The value of the zero- 
point motion which determines the ground-state energy is omitted. In the case of a y-unstable 
nucleus the ZPM energy will be greater than the energy difference between the two minima. 

since only two neutrons have been removed and we might not expect such a dramatic 
change in the potential from that of the N = 8 2  nucleus. However, we should note that 
this minimum is almost washed out by the 6.5 MeV energy of the zero-point motion. The 
potential well for N =  78 shows stable minima for both oblate and prolate deformations. 
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It is soft against y vibration but stiff against p vibration. Because of this the second 
excited 2' level will no longer belong to the band based on the first excited O+ band head 
but rather it will be the head of a y-vibration band. 

There is a little change in the general shape of the potential-energy function as we move 
to the N = 7 6  isotope, but the nucleus does become increasingly y soft as the minimum 
becomes increasingly deep. The same is true for the N =  74 isotope. In the case of 124Te 
(N= 72) we have a typical example of the y-unstable nucleus which may also be described 
by the O(6) limit in the IBM where the ground-state wavefunction is distributed over the 
whole range of y values. Both the contour and the axial plots of the potential-energy 
surface of the N =  70 isotope predict another good example of a y-soft nucleus. 

P 

P 

Figure 2. The contour plots show the theoretical potential-energy surface of N =  70, 74 and 
82 tellurium isotopes. The triangles are defined by the prolate edge which corresponds to 
Pmi, =0, Pmax =0.625 and y=Oo and the oblate edge which corresponds &in =O, PmaX = 
0.625 and y= 60°. 
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An examination of the axial plots through the whole range of tellurium isotopes shows 
clearly that the N =  78 and 76 isotopes are oblate. We also notice that with the decrease in 
neutron number the prolate minimum becomes deeper and moves to a larger /3 value. This 
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Figure 3. The plots show Ed& y=fixed) against /3 for '22Te and the experimental and 
theoretical DDM and IBM-2 energy levels. The horizontal lines represent the calculated ground- 
state energy which includes the energy of the zero-point motion. The broken curve 
corresponds to y = 30°. 
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Figure 4. The plots show Ed&?, y=fixed) against /I for '*"e and the experimental and 
theoretical DDM and I B M . ~  energy levels. The horizontal lines represent the calculated ground- 
state energy which includes the energy of the zero-point motion. The broken curve 
corresponds to y=  30'. 

prolate shape is favoured for N = 7 6  while for N = 7 2  and 7 0  the two shapes are in 
equilibrium with comparable p and Vrnin values. We plot in figure 7 values of /3 
corresponding to Vmin as a function of neutron number as we proceed from the closed 
shell at N =  82.  This illustrates the transition from a spherical nucleus ( N =  8 2 )  through 
deformed y-unstable nuclei ( N =  7 2 ,  70) to the higher vibrational-like nuclei. We see a 
smooth increase in p( Vmin) with decreasing neutron number for both prolate and oblate 
shapes. First the oblate shape dominates and beyond the y-unstable region, where both 
shapes have the same deformation, the prolate shape is then the preferred one. 

0 15 30 45 60 
Deformation I( Idegl 

Figure 5. A cut in the potential-energy surface as a function of y for constant p=0.2 is 
shown for '22, '24Te. The potentials have been normalised to zero at their minima. 
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Figure 6.  The deformation energies Ed&, y=fixed) for the tellurium isotopes A = 
124, 128, 130, 132, 134 are shown along the prolate and oblate axis. The energies are 
normalised to zero at /3=0 for all the isotopes. The horizontal lines represent the ground- 
state energies. 

2.3. The level energies 

The calculated collective energy levels of the tellurium isotopes were obtained by changing 
the value of N over the range N =  68-82 without adjusting any parameters in the model. In 
figures 3 and 4 we show the DDM experimental level energies for positive-parity states with 
I <  6 for the N =  70 and 74 isotopes. An IBM-2 fit is also presented in the same figure. DDM 

results are compared with the available experimental positive-parity states in figure 8 for 
the full range of isotopes. The behaviour of all of these states as a function of neutron 
number appears to be well reproduced by the DDM. However, the clear deviation of the 6 + 

level from the typical behaviour of the collective energy spectrum as a function of neutron 
number could be related to a non-collective feature of this state especially near the closed 
shells at Z = 5 2  and N=82. This may suggest the presence of some admixture in the 
wavefunction of this state from the two-quasiparticle configuration [ 2 11. 
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Figure 7. The plots show the deformation ( p )  at the potential minimum as a function of 
neutron number before the closed N =  82 shell on both the prolate and oblate axis. 

In the previous section we proposed that the potential-energy surfaces of '"Te and 
lZ6Te neighbours of the y-unstable lZ4Te nucleus also possess y-unstable characters. As 
a consequence these nuclei will have degeneracies in levels with the same radial quantum 
number (n). Such degeneracies correspond to different representations, z, of the O(5) 
symmetric group [6] with energy E,, and an approximate r analysis of the DDM 

wavefunctions of 0' states have been made for these nuclei. We find that z is an 
approximately good quantum number. For example in lZ2Te the ground state is 96% (z= 
0), the first excited 0' state produced by the DDM at 1.14 MeV has 99% (z= 3), while the 
second 0' excited state at 2.26 MeV has 92% (z=O). In the lZ6Te nucleus the dominant 
components from the DDM are 94% (z=O) for the ground state, 84% (z=3) for the first 
excited 0' state at 1.91 MeV and 94% (z=O) for the second excited state at 2.26 MeV. If 
we take the experimental z assignment to the 0' states to be O;(OO),  Oi(10) and Ol(03) 
then the DDM energy predictions for the two experimental 0; states in 122Te and '26Te at 
1.36 and 1.87 MeV are too high by 0.9 and 0.4 MeV respectively, while the z= 3 states are 
too low. However, if we assume the assignments to be like those of a typical spectrum of 
0' states in the O(6) limit of the IBM [22,23] then the DDM produces an impressive 
agreement with experiment without any parameter adjustment. 

Figures 9-13 show the variation of some parameters of the tellurium isotopes from 
which we may draw the following conclusions. 

(i) The microscopic quadrupole moment of the first excited state Q(2;) has a negative 
sign, figure 9, except for the two cases of N =  80 and 82, where the sign changes to positive 
near the closed shell. Also the 2; state, which belongs to the first excited 0' band head, 
has a negative quadrupole moment in N =  68, 80 and 82 (figure lo), which indicates that 
this 0,' state is the head of a P-vibrational band. The quadrupole moment of this 2; state 
in the remaining isotopes has a positive sign and we thus conclude that the 2; in the 
N=70-78 range should belong to a different band or alternatively it may be the head 
of the y-vibrational band. This feature is typical of the level structure of nuclei 
in the neighbourhood of y-unstable nuclei. 
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Figure 8. Experimental (points) and calculated energies for ( a )  the ground-state band and 
(b)  some states of the quasibeta and quasigamma bands. The broken curve presents an 
alternative assignment for the systematic of the excited O+ state which has been made 
following the t analysis of O*  states in these nuclei as explained in the text. The experimental 
points are from references [5,24-281. 

(ii) The E(4,) :E(2 , )  ratio (figure 11) of the level energies decrease from the maximum 
of 2.09 for N =  70 to 1.23 for N =  82. This indicates a non-collective quasiparticle excitation 
becoming increasingly important as the neutron number approaches N =  82. 

(iii) Both the experimental and calculated E(4,) :E(2*) ratios indicate that the 4 and 
2; levels should occur close together throughout the range of isotopes from N =  68-78. 

(iv) The large values of the ratios E(Oz) :E(2,) imply stiffness in the collective potential 
(figure 12) in the p degree of freedom which is consistent with the values in figure 13 for the 
deformation energy EdeT. 
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Figure 9. The quadrupole moments of the excited 2; state of tellurium isotopes relative to 
Qrot = f (16- / rB(E2;  2,-01)'/* are shown. The experimental data are taken from references 
[ I ,  21. 

(v) The prolate-oblate energy difference Ep-0 in figure 13 gives a measure of y softness 
and the existence of a prolate or oblate shape for the ground state. Thus we see that the 
N =  70 and 72 isotopes are the most y soft and that the prolate to oblate transition occurs 
between N =  76 and 18, 
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Figure 11. A comparison is made between calculated IBM-2, DDM and experimental 
E ( 4 l ) : E ( 2 1 )  and E(41):E(22) ratios for even-mass tellurium isotopes as a function of 
neutron number N .  

(vi) The magnitude of the energy of zero-point motion changes from 1.8 MeV for 
N =  68 to 16 MeV for N =  82 as may be seen in figure 13. This gives an approximate 
measure of the overall stiffness of the collective potential-energy surface. For example for a 
spherical oscillator, the energy of the zero-point motion is given by $hw, where h is related 
to stiffness of the potential [ 9 ] .  

4 

6 8  70 72  74 76 7 8  80 82 
Neutron number 

Figure 12. A comparison between calculated and experimental E(02) :E(2,  ) ratio for even 
mass tellurium isotopes is shown as a function of neutron number N .  The chain curve shows 
the DDM results and the full curve shows the IBM-2 results. 
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Figure 13. The DDM prediction for properties of the tellurium isotopes are plotted as a 
function of neutron number N .  Energy of zero-point motion is denoted by &pM,  

Edef=Emin - - E P , ~  and Ep-o is the difference between the prolate and oblate minimum 
potential. 

2.4.  The absolute B(E2) values 

The calculated B(E2) values for transitions in the tellurium isotopes are presented in 
figure 14 together with the experimental values. Once more the agreement of DDM 

predictions with experimental values is good and it should be recalled that the DDM values 
are obtained without any fitting procedure or normalisation. The IBM-2 values were 
obtained by allowing the boson effective charges to vary with the neutron number (figure 
15) within the area between two lines corresponding to the SU(5) and O(6) limits in I B M - I  

(see figure 6 in reference [7]). Furthermore each calculated value was fitted to the 
corresponding measured B(E2; 2;-0;) result for each of the isotopes. We see that these 
criteria provide B(E2) values for other transitions which agree well with the DDM values 
and with experiments except for 22 -0; transitions in lower neutron number isotopes 
where the theoretical values in IBM-2 are about a factor of ten too small. 

We note that since no parameter is adjusted in the DDM as we pass from one nuclear 
region to another as in most popular models, we cannot expect perfect agreement with the 
experimental data. Nevertheless, the potential-energy surface produced by the DDM is 
sensitive to the variation in neutron number through the chain of tellurium isotopes. The 
energies of experimental positive-parity states are well reproduced. Also B(E2) transition 
probabilities and the collective quadrupole moments are generally in good agreement with 
the experimental data. The occurrence of the second 0' level occurs naturally in the DDM 

and higher 0' levels may be accounted for as collective levels without invoking the 
necessity of quasiparticle excitation. Altogether we believe that this study of the tellurium 
isotopes provides good evidence for the usefulness and quality of the DDM. 
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Figure 15. Neutron (e,) and proton (e,) boson effective charges are plotted as a function of 
neutron number in tellurium isotopes, The two charges were chosen to fit B(E2; 2 ,  -01 ) for 
each nucleus. 
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