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A new unexpected behavior of pair transfer matrix elements 1 superfluid rotating nucle1 1s predicted With increasing angular
velocity they drop to zero, change their sign and 1n some cases even oscillate between positive and negative values Thus effect 15
related to diabolical points 1n rotating quasiparticle spectra and 1s closely analogous to the DC-Josephson effect in superconduc-

tors 1n the presence of a magnetic field

As early as 1960, Mottelson and Valatin [1] pre-
dicted a sharp collapse of the pairing correlations 1n
nucler at high angular velocities Theoretical inves-
tigations going beyond the mean field approxima-
tion, taking into account fluctuations, show that in
real nucler such an effect 1s probably completely
smeared out [2,3], and to date 1t has not yet been
experimentally observed We have to distinguish
between the order parameter for this phase transi-
tion, the parameter 4, and the gap 1n the spectrum of
the rotating quasiparticles At high angular momenta
we have alignment processes, which reduce the gap
1n the quasiparticle spectrum and often cause gapless
superconductivity [4] In these cases 1t 18 very diffi-
cult to deduce information about the order parame-
ter 4 from the spectra

Within the last few years pair transfer matrix ele-
ments 1n rotating nucler have become an object of
great interest [ 5,6], 1n particular those for the trans-
fer of a pair of particles coupled to angular momen-
tum zero [St=(c%c");_o] Ata first glance they seem
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to be especially suitable for measurement of pairing
correlations, because they are defined as

P={A4+2| ST 4>, (1)
and are therefore related to the order parameter
AG=(P| ST D> (2)

1 an analogous way as the “spectroscopic” quadru-
pole moment in deformed nuclei 1s to the “intrinsic”
deformation parameter In the ground state of super-
fluud nucler these matrix elements are strongly
enhanced by pairing correlations and therefore pro-
vide direct information on the degree of nuclear
superfludity At finite spins, however, as we have
already recently reported 1n a short note [7], they
behave in some cases rather independently of the
pairing parameter 4 they can vanish at relatively low
angular velocities, can change their sign and may even
sometimes oscillate as a function of the angular
velocity, an effect which we have called “diabolic pair
transfer” In this letter we study this effect in more
detail In particular, we investigate 1ts dependence on
the strength of the pairing correlations, 1€, on the
size of the order parameter 4

In the simple BCS approximation, which 1s valid
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for time reversal invariant wave functions, 1 €, at spin
zero, the pair transfer matrix element (1) 1s directly
proportional to the gap parameter 4 In the rotating
nucleus, however, time reversal symmetry 1s broken,
and we have to use full Hartree~-Fock-Bogoliubov
(HFB) theory Besides the occupation probabilities
we have to consider the influence of the Coriolis field
on the single particle wave functions in the form of
alignment processes

For our investigations we use number projected
HFB theory in the rotating frame, a theory which has
since many vears turned out to be very successful for
the description of high spin phenomena [8-11] We
work with the Kumar-Baranger hamiltonian [12]
and study the nucleus '**Hf

As a first step we solve the cranked number pro-
jected HFB equations for this hamiltonian (we also
carry out a calculation without number projection 1n
order to study the difference) These calculations are
1dentical to those reported in ref [2] and details are
given there For each angular momentum 7 we thus
have a self-consistently determined gap parameter
A(I) The cranking frequency w and chemical poten-
tial are adjusted to the average angular momentum
and the average particle numbers For the case with-
out number projection (fig l1a) we find a pairing
collapse at spin 247, however, with number projec-
tion the parameter 4 decreases rather smoothly

In the second step these wave functions are used to
calculate the number projected transfer matnx ele-
ments (1) usmg the techniques described 1n Appen-
dix E of ref [13] in some detail

In fig 1 we present the surprising result, that with
increasing angular momentum the “spectroscopic”
parr transfer matrix element P and the “intrinsic”
order parameter 4/G behave very differently In both
calculations the paiwr transfer matrix elements
decrease more rapidly than the order parameter, they
even go through zero for critical angular momenta
(regions of “diabolic pair transfer”) changing their
sign afterwards In contrast to expectation this
behavior 1s more dramatic in the case of a variation
after projection, where the parameter 4/G behaves
very smoothly In both cases the sign changes occur
considerably earlier than the pairing collapse 1n the
simplie HFB calculation

The vanishing of a similar quantity, namely the
matrix element for particles transferred from the
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Fig 1 Pair transfer matnix elements P as defined mmeq (1) (full
lines) and intrinsic gap parameters 4/G (dashed lmes) in the
nucleus '%®Hf as function of the angular momentum The gap
parameter 1s taken from the self-consistent calculation without
(a) and with (b) number projection in ref [2]

0 10 20

ntruder shell to the remaining orbits of the core, has
already been observed and discussed by Faessler [14]
m 1980 Another related quantity, the matrix ele-
ment of the time reversal operator between two
rotating orbits with opposite signature, also shows
zeros This quantity had been investigated in ref [15]
for entirely different reasons, however, the zeros had
been overlooked, and only oscillations around a value
different from zero were discussed.

In order to reach a better understanding of this
strange behavior, we discuss in fig 2 a number of
cases with a constant gap parameter (2) obtamned
from cranked shell model calculations 1n the same
model with properly adjusted pairing fields Only
unprojected results will be shown, because it turns
out, that for the calculation of the pair transfer matrix
elements (1) number projection 1s not important as
long as we take into account the change in the chem-
1cal potential between the nucleus |4) and |4A+2)
For a constant gap parameter 4 we find that the abso-
lute size of the transfer matrix element P stays essen-
tially constant as a function of the angular
momentum, and, as in the case of spin zero, 1t 1s pro-
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Fig 2 Parr transfer matrix elements 1n the nucleus !%Hf as a
function of the angular velocity » Constant values of the gap
parameters A=G{(P|ST| D) are used The matrix elements are
calculated without number projection

portional to the gap parameter There are, however,
certain exceptional regions of “diabolic pair trans-
fer” In these relatively narrow regions the matrix
elements change rapidly, their sign going through zero
at critical angular velocities With increasing spin we
observe several such sign changes, 1€, we find an
oscillating behavior

As we have now seen the behavior of the realistic
calculation 1n terms of simulations with constant gap
parameters, we would like to go a step further and try
to clanify the diabolic behavior 1tself It turns out that
pawring correlations increase the absolute size of the
transfer matrix element by up to an order of magni-
tude 1n the rare earth region (more precisely a factor
1/G=A/22) and they also affect the diabolic fre-
quencies, as more detailed calculations [16] show
However, they do not change the qualitative struc-
ture It therefore becomes interesting to study the
behavior of the pair transfer matrix elements for
4=0

It turns out that the intruder 1,5, shell plays an
1mportant role in the understanding of this effect
Actually the effect occurs only 1n those realistic cases
where the transferred pair occupies orbits 1n the
intruder shell [16] with a large probability In fig 3
we therefore present a calculation for a prolate 1,5/,
shell with and without pairing The different curves
numbered by »=1, 2, 3 correspond to a situation,
where we have (v—1) pairs 1n the 1,3, shell of the
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Fig 3 Paur transfer matrix 1n a prolate 1,3/, shell with and without

pairing as a function of the angular velocity @ (1n units of the

parameter x of ref [17]) Further details are given 1n the text

nucleus having particle number 4 and v pairs for the
particle number 4+2

Let us first discuss the case without pairing Here
the difference between the two nucler 1s a pair of
nucleons 1 the K=1/2 level for v=1, K=3/2 level
for v=2, and so on For each pair the indrvidual
nucleons have different signature We find their sin-
gle particle wave functions D* by diagonalizing the
matrix €,F wj, The corresponding “rotating parti-
cles” are created by the operators a} and ak The
wave function |4+2) 1s 1n this case obtained from
the wave function |4 ) by adding two particles in the
orbits K and X The pair transfer matrix element P
turns out to be the spatial overlap of the two wave
functions with different signature

P={A+2|S"|4) =<d|agaxST |y = } DyxDyx

(3)
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a quantity which has been calculated in a different
context i ref [15] As we increase the angular
velocity this spatial overlap changes and 1t depends
on special properties of the orbit, whether 1t vanishes
at some critical velocities and how many times 1t
changes sign

The case v=1 corresponds to K=1/2 orbits In this
case we have no “diabolic region” With increasing
angular velocity this overlap 1s only reduced, 1t van-
1shes 1n the limit w—co For the case y=2, which
corresponds to K=3/2 orbits, we observe a rapid
decrease and one sign change, 1e, one diabolic
region This goes on up to the middle of the shell
(K=17/2) with three diabolic regions From there on
the situation 1s reversed

This behavior can be understood (for details see
ref [16]) in the simpler model of a one-dimensional
harmonic oscillator with a pushing operator vp,
mstead of wj, in our three-dimensional case This
operator causes a shift 1n momentum space, and
therefore the pair transfer matrix element 1s just the
overlap of two wave functions with the same oscilla-
tor quantum number 1n two oscillator wells shifted
in momentum space The ground state (n=0) has
no node and the overlap decreases monotonically
with increasing pushing velocity The first excited
state (n=1) has one node and therefore we find one
critical velocity where the overlap vanishes In gen-
eral, we have for quantum number # # nodes and n
points More detailed investigations [16] show that
the state with #==0 1n the oscillator case corresponds
to the K=13/2 orbit and increasing n corresponds to
decreasing K-quantum numbers Up to K=7/2 we
indeed observe an increasing number of nodes
However, 1n the lower half of the shell this simple
picture no longer applies Here there 1s an increasing
amount of alignment, which causes the orbits to rap-
1dly approach eigenstates of j, with different quan-
tum numbers, so that the spatial overlap rapidly
decays to zero before the oscillations manifest
themselves

The second part of fig 3 shows the calculations 1n
the 1,3, model with a constant pairing potential Here
we find the same behavior as in the case of 4=0 The
par transfer 1s, as expected, enhanced, and the dia-
bolic regions are shifted to somewhat higher angular
velocities This indicates, that the effect of diabolic
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pair transfer 1s not washed out by pairing correla-
tions, which 1s also evident from the calculations 1n
realistic situations in figs 1 and 2

The oscillating behavior of the pair transfer matrix
element as a function of the angular velocity has a
close analogy to the oscillating behavior of the elec-
tric current 1n Superconducting Quantum Interfer-
ence Devices (SQUID) as a function of the magnetic
field, the DC-Josephson effect [ 18] In fact, 1t 1s well
known that the Coriolis field and the magnetic field
have the same underlying mathematical structure

It had already been observed 1n earlier investiga-
tions that the oscillating behavior of backbending [17]
was connected with the vanishing of the interaction
matrix element between particles 1n the intruder
orbits and particles 1n the core [14] It turned out
that the node of this matrix element corresponds
precisely to the first zero 1n the pair transfer matrix
elements discussed 1n the previous section Since we
now understand why these zeros occur, we are in a
position to give a simple mnterpretation of this effect

We recall that the oscillating behavior of back-
bending 1s connected with the vanishing of the inter-
action between the ground state band and the s-band
of two aligning particles for certain particle numbers,
1e , for certain chemacal potentials 4 In the cranking
approximation the s-band 1s described as a two-
quasiparticle band and for each particle number, 1 e,
for each value of the chemical potential A, the inter-
action V(1) between this band and the ground state
band 1s obtained as the minimum of the two-quasi-
particle energy E;+E, It turns out that for certain
values of A there are sharp level crossings 1n the spec-
trum of the cranked shell model hamiltionian

Ex—A—], 4
( 4 —(ex—A—wJx) ) )

whose eigenvalues are the quasiparticle energies Ex
These sharp level crossings are called diabolical points
[19]

In order to understand the connection of these dia-
bolical points 1o the vanishing of our transfer matrix
elements more clearly and in order to show why we
call the regions where the transfer matrix elements
vanish regions of diabolic pair transfer, we decom-
pose the diagonalization of the cranked shell model
hamiltonian (4) 1nto two steps We first diagonalize
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the submatrices ex—A¥ wJ, and find the eigenvalues
€& () —2 and the eigenfunctions D*(w) In the
second step we work 1n this basis, 1 e , 1n a basis of a
deformed rotating model without pairing In this
basis the upper left and the lower right corner of the
matrix (4) are diagonal, but the upper right and the
lower left corner, which were originally diagonal, are
no longer diagonal They contain a muitiple of the
transfer matrix T=(D~)T-(D*), whose diagonal
matrix elements are the pair transfer matrix ele-
ments (3) For small values of @ this matrix 1s still
close to diagonal, and since the first zeros of the pair
transfer matrix elements in fig 3 lie at relatively small
w-values, we adopt 1n the following the approxima-
tion of neglecting the off-diagonal matrix elements
of this matrix This approximation has already been
used 1n the literature [20], 1t 1s certainly only an
approximation and 1t fails for large w-values, but 1t
gives us a simple possibility to understand the con-
nection between the oscillating behavior of back-
bending and the first zero of our transfer matrix
elements, since 1t gives us an analytic expression for
the eigenvalues of the matrix (4), 1 e, for the quasi-
particle energies We find for the sum of the two low-
est eigenvalues

E\+E,=2{[(e* +€~)/2—1]?

+ £ Th(w)}? (5)

In order to find the diabolical points 1 this
approximation the square root has to vanish, 1 e, for
fixed 4 we have to look for the minimum of this
square root It lies at the points where the transfer
matrix element Tgx vanishes for the first time For
these mimima we have to vary the chemical potential
A until the first part vanishes This occurs for

A= (@) +e ()]/2 (6)

In table 1 we give a list of the diabolical points
found 1n this approximation and compare them with
the exact diabolical points obtained from an exact
diagonalization of eq (4) We find good agreement,
which means a close connection to diabolic pair
transfer discussed 1n this paper and the well-known
oscillating behavior of backbending

It also explains the well-known fact that for an
arbitrary j-shell there are j—3/2 points, where the
Interaction matrix element V(A) vanishes Since these
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Table 1
Diabolical points in the cranked shell model hamiltomian (4) for
an exact solution and an approximate solution of eq (6)

K Cranking Chemical  potential
frequency w/k MK

exact approx exact approx
372 0085 0033 —0936 —0824
5/2 0097 0055 —0534 —0 556
7/2 0112 0084 —-0151 -0170
9/2 0158 0124 0388 0355
1172 0230 0190 1122 1057

points correspond precisely to the first diabolic points
of the pair transfer matrix elements without pairing,
we cleary understand this number There are j+1/2
pairs with the quantum numbers K=1/2, ,j The
lowest level has no diabolic point, because there the
large matrix element {1/2|j| —1/2) causes imme-
diate alignment and no diabolical points are possi-
ble The highest level K=y has 1n j,-space a wave
function close to a gaussian with no node The cor-
responding operlap has no zero We therefore have
only diabolic points for the j— 3/2 levels with K=3/2,

»J—1

The question whether this nuclear SQUID can be
observed experimentally, 1s certainly very interest-
ing Since, as we have seen, the diabolic pair transfer
1s closely connected with the oscillating behavior of
backbending, which has been clearly seen 1n experi-
ment, there now already 1s indirect experimental evi-
dence for this effect On the other hand, pair transfer
matrix elements in rotating nucle: can be measured
directly in Coulomb excitation with heavy ions In
order to obtain not only absolute values but also rel-
ative phases of these matrix elements, one should
exploit the interference between a transfer before and
after the diabolic region 1n a similar way as mterfer-
ence has been used to determine the sign of the quad-
rupole moment by the reorientation effect [21] In
this case 1t would be a “reorientation 1n gauge space”

So far, measurements of the pair transfer matrix
elements at high spins has had the purpose of detect-
ing the often predicted pairing collapse In this arti-
cle we have shown that 1n rotating nucle1 this matrix
element 1s no longer proportional to the gap param-
eter 4 and that 1t can vanish at angular velocities con-
siderably lower than that at which the pairing
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collapses In fact, a new effect in 1ts own right has
been found, which has nothing to do with the pairing
phase transition an oscillating behavior of the pair
transfer matrix element, which 1s analogous to the
DC-Josephson effect 1in condensed matter physics It
will be of mmportance, therefore, to explore 1t
experimentally

We acknowledge a number of extensive and useful
discussions with J de Boer, R R Hilton, HJ Mang,
H Massmann, J O Rasmussen and P Schuck
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