Exploring the 'island of inversion': Coulomb excitation of the neutron-rich Mg isotopes ³⁰Mg and ³²Mg

Oliver Niedermaier

Max-Planck-Institut für Kernphysik Heidelberg, Germany

for the **REX-MINIBALL** collaboration

ISOLDE Physics Workshop CERN, Geneva December 13 - 15, 2004

³⁰Mg → ^{nat}Ni (1 mg/cm²), 2.25 MeV/u, I_{Beam} ~10⁴/s, T~ 3 days

- in principle 3 sources for isobaric contaminations:
 - β decay (during trapping & breeding, $t_{1/2}(^{30}Mg) = 335 (17) \text{ ms}) \rightarrow 4.5 (0.5) \%$

- in principle 3 sources for isobaric contaminations:
 - β decay (during trapping & breeding, $t_{1/2}(^{30}Mg) = 335 (17) \text{ ms}) \rightarrow 4.5 (0.5) \%$
 - primary ISOLDE target
 - residual gas (EBIS)

- in principle 3 sources for isobaric contaminations:
 - β decay (during trapping & breeding, $t_{1/2}(^{30}Mg) = 335 (17) \text{ ms}) \rightarrow 4.5 (0.5) \%$
 - primary ISOLDE target
 - residual gas (EBIS)

(confirmed by Laser ON/OFF measurement)

- in principle 3 sources for isobaric contaminations:
 - β decay (during trapping & breeding, $t_{1/2}(^{30}Mg) = 335 (17) \text{ ms}) \rightarrow 4.5 (0.5) \%$
 - primary ISOLDE target
 - residual gas (EBIS)
- --- for IS410, October 2003:

$$\frac{N(^{30}\text{AI})}{N(^{30}\text{Mg} + ^{30}\text{AI})} = 6.5(1.0)\%$$

(t < 1.2s)

(confirmed by Laser ON/OFF measurement)

• two Si detectors (A = 1 cm², d = 10 μ m)

• installation and analysis: V. Bildstein, MPI-K, Heidelberg

32_N **Beam Purity** Mg

Coulomb Excitation of ³²Mg

$^{32}Mg \rightarrow ^{107}Ag$ (4.4 mg/cm²), 2.84 MeV/u, $I_{Beam} \sim 1.5 * 10^4$ /s, T~ 60 hours

 $^{32}Mg \rightarrow ^{107}Ag$ (4.4 mg/cm²), 2.84 MeV/u, $I_{Beam} \sim 1.5 * 10^4/s$, T~ 60 hours

• **REX-ISOLDE** and **MINIBALL** now in production phase

- → T. Behrens
- J. Iwanicki
- → J. Van de Walle
- first physics results (and publications)
- IS410, Coulomb excitation of ^{30,32}Mg:
 - B(E2) value of ³⁰Mg ist lower than previously reported
 still located outside 'island of inversion'
 - preliminary B(E2) value of ³²Mg supports complete intruder configuration

Collaboration

REX-MINIBALL collaboration:

F. Aksouh^a, C. Alvarez^b, F. Ames^b, T. Behrens^c, V. Bildstein^d, H. Boie^d, P. Butler^e,
J. Cederkäll^e, T. Davinson^f, P. Delahaye^e, P. Van Duppen^a, J. Eberth^g, S. Emhofer^b,
J. Fitting^d, L.M. Fraile^e, S. Franchoo^h, H. Fynbo^e, R. Gernhäuser^c, G. Gersch^g,
D. Habs^b, R. v. Hahn^d, H. Hess^g, A. Hurstⁱ, M. Huyse^a, O. Ivanov^a, J. Iwanicki^{ij},
O. Kester^b, F. Köck^d, T. Kröll^c, R. Krücken^c, M. Lauer^d, R. Lutter^b, P. Mayet^a,
M. Münch^c, O. Niedermaier^d, T. Nilsson^k, U.K. Pal^d, M. Pantea^k, M. Pasini^b,
P. Reiter^g, A. Richter^k, K. Rudolph^b, H. Scheit^d, A. Scherillo^g, G. Schrieder^k,
D. Schwalm^d, T. Sieber^e, H. Simon^k, O. Thelen^g, P. Thirolf^b, J. van de Walle^a,
N. Warr^g, D. Weißhaar^g, F. Wenander^e, B.H. Wolf^b

^aInstituut voor Kern- en Stralingsfysica, University of Leuven, Leuven, Belgium

^bLudwig-Maximilians-Universität München, München, Germany

^cTechnische Universität München, München, Germany

^dMax-Planck-Institut für Kernphysik, Heidelberg, Germany

^eCERN, Geneva, Switzerland

^fUniversity of Edinburgh, Edinburgh, UK

^gInstitut für Kernphysik, Universität Köln, Köln, Germany

^hUniversität Mainz, Mainz, Germany

ⁱOliver Lodge Laboratory, University of Liverpool, UK

^jHeavy Ion Laboratory, Warsaw University, Warsaw, Poland

^kTechnische Universität Darmstadt, Darmstadt, Germany