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Aktract: Nuclei with either protons or neutrons in closed shells are considered. States in which a 
pair of nucleons with J = 0 is distributed with unequal amplitudes over several j-orbits are 
considered. Conditions are given under which states with definite numbers of such pairs are 
eigenstates of the shell-model Hamiltonian. It is shown that these conditions imply binding 
energies of even nuclei which have linear and quadratic terms in the nucleon number. It is shown 
that these conditions are satisfied by effective Hamiltonians constructed for the Ni isotopes. Also 
pseudonium nuclei seem to fall into this category. The problem is investigated whether a linear 
and quadratic dependence of ground state energies implies zero generalized seniority for these 
states. Finally, states with generalized seniority v = 1 and v = 2 are considered. It is shown that 
if the latter states are eigenstates, a constant separation between the ground state and v = 2 
states, independent of the number of pairs, follows. 

1. Illtroduction 

The most important feature of binding energies of nuclei with a fixed proton or 
neutron number is the well-known pairing effect. If we consider identical nucleons in 
a givenj-orbit the existence of a pairing term is a simple consequence of the seniority 
scheme. The ground state energies are given in this case by the simple expression ‘) 

const. + mC + t_m(m - ~)LY + [*ml/?. (1) 

This result holds for any two-body interaction provided the seniority is a good quan- 
tum number. The shell-model Hamiltonian is diagonal in the seniority scheme for 
any two-body interaction if j 5 $. Nuclear spectra where the & orbit is being filled 
demonstrate that also there seniority is a good quantum number. In actual nuclei “) 
the coefficient of the step function [fm] is the large and attractive pairing term. The 
coefficient a is found to be rather small and repulsive in agreement with the saturation 
of nuclear interactions and the existence of a large symmetry energy. 

The formula (1) holds for,.uny two-body interaction which is diagonal in the sen- 
iority scheme. It is not a result of the pairing interaction which is a rather poor ap- 
proximation to the effective nuclear interaction. In particular, it holds for interactions 
for which the J = 2,4,6 . . . levels (with seniority v = 2) are not degenerate. The large 
value of the pairing term and its being attractive follow simply from the center of muss 
of these v = 2 levels lying considerably above the J = 0, v = 0 ground state. 

Another important property of any interaction diagonal in the seniority scheme 
follows from the pairing property “) of such interactions (a rank k = 0 tensor inter- 
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2 I. TALMI 

action which does not have the pairing property gives rise to a +m(m- I) term in all 

states of thej” configuration). The spacings of u = 2 levels with respect to the J = 0, 

z’ = 0 ground state are the same in allj” configurations. 

The m-dependence of binding energies given by eq. (1) as well as the constant 

spacings of L! = 2 and 2’ = 0 levels were found in many nuclei where there is evidence 

of a single j-orbit being filled. However, these two properties were observed also in 

many nuclei where considerable configuration mixing was found, in particular in 

nuclei where either protons or neutrons form closed shells ‘). The purpose of the 

present study is to see whether these properties can be understood as being due to 

eigenstates of the shell-model Hamiltonian which are similar to those of the seniority 

scheme in the case of a singlej-orbit. 

2. States with generalized seniority zero 

The simplest generalization of the seniority scheme for a singlej-orbit is obtained 

for a group of several degenerutej-orbits with the pairing interaction. Using the quasi- 

spin formalism many of the results in a singlej-orbit could be obtained ‘). There are 

two difficulties associated with the use of this scheme. First, the pairing interaction is 

a poor approximation of the effective interaction. In particular, the u = 2 states are 

far from having the same energy as prescribed by the pairing interaction. Also the 

mutual average repulsion of identical nucleons in different orbits ‘) is absent from the 

pairing interaction. The other difficulty is that the single-nucleon energies of the 

variousj-orbits are far from being degenerate. As a result, the wave functions ob- 

tained in actual calculations do not correspond to those of the pairing interaction in 

the degenerate case. Another scheme which takes into account different single-nucleon 

energies is the treatment of the pairing interaction with the Bardeen-Cooper-Schrieffer 

wave functions. As mentioned above, the pairing interaction is not a good effective 

interaction. In addition, BCS wave functions do not have a definite number of par- 

ticles and the approximations involved do not make much sense for a small number 

of nucleons. 

In order to obtain a better understanding we will first consider doubly even nuclei. 

The binding energy of an odd-even nucleus could not be expected to be given simply 

by eq. (1) in the non-degenerate case. Indeed, in the Ni isotopes where the 2p+, If* 

and 2p, orbits were taken into account 6-8), binding energies of even nuclei are 

given very well by eq. (1) while odd nuclei do not agree well with it. The situation in 

odd nuclei will be considered later on. It was found in refs. 6-8) that the ground states 

of even Ni isotopes are almost exclusively built from pairs coupled to ./ = 0 in the 

various orbits. It is therefore interesting to see whether a simpler description of these 

states ca:: be found which will be a natural generalization of the single j-orbit sen- 

iority scheme. 

Let us consider a state of two particles with J = 0 distributed over several j-orbits. 

Such a state can be obtained by operating on the vacuum (which contains closed 
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shells) with the creation operator 

S+ = La/ST, SJ = I(-)j-“~,+,a,+_,. (2) 
The operator S,: creates the J = 0 state of the jz configuration. The states with 

seniority u = 0 in the j2” configuration are given by (S,‘)“lO). These states correspond 

to antisymmetrized wave functions of n pairs coupled to J = 0. In the quasispin 

formalism S,? is replaced by the special operator S + in which the coefficients xi are 

equal to each other. In general, we can try to construct the ground state of m = 2n 

nucleons by 

(S ‘YIO). (3) 

Such states have been known for a long time. They correspond to the part with 2n 

particles of the BCS wave function ‘). Recently, they were used by several authors 

[refs. low 
Let us consider for n = 1 an eigenstate of a Hamiltonian H acting in the space 

considered, which contains single-particle energies as well as any effective two-body 

interactions 

Hs+lo) = VoS+~o). (4) 

Under which conditions will the states (3) for any n also be eigenstates? In a single 

j-shell it is sufficient to consider the j4 configuration +. If the u = 0 J = 0 state is an 

eigenstate of H in that configuration it will also be so for any m (and also H will be 

diagonal in the seniority scheme in states with any value of u). Let us calculate also 

here 

H(S+)*IO) = [H, S+]S+IO)+S+HS+10) 

= [[H, S+]S+]lO)+S+[H, S+]lO)+ V,(S+)lO). 

If we define HIO) = 0, we obtain [H, S’]lO) = Y,S+IO) and hence 

H(S+)*lO) = 2V,(S+)*lO)+[[H, S’], S+]lO). (5) 

If the Hamiltonian H contains only single-particle energies and two-body interactions 

its double commutator with S + is a sum of products of four creation operators. Thus, 

it follows that a necessary and suficient condition that (S’)*lO) be an eigenstate is 

[[H, S+], SC] = A(S+)*, (6) 

where A is a constant. 

If both eqs. (4) and (6) are satisfied it can now be shown that (S’)“(O) is an eigen- 

state of H for any value of n. We can prove by induction for n 2 2 that 

H(S+)“lO) = &z(n-l)(S+)“-‘[[H, S+], S+](O)+nV,(S+)“lO). (7) 

7 In ref. ‘) p. 324 the u = 1 and o = 3 states ot the j’ configuration are considered but this is 
equivalent to the discussion of the J = 0 states with t) = 0 and u = 4 in the j’ configuration. 
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In fact, consider 

H(S+)“IO) = [H, S+](S+)“-lIO)+S+H(S+)“-‘~O) 

= [[H, S’], S+](S+)“-2(0)+S+[H, s+](S+)“-2~0)+S+H(S+)“-1~0) 

= (S’>n_2[[H, S+], Sf]~o)+2S+H(S+)“-‘lo))-(S+)2H(S+~-2]0). 

If now eq. (7) is assumed to hold for n- 1 and n-2 we obtain 

H(S+)“lO) = (i+2 J+-l)(n-2)-+(n-2)(n-3))(S+)“-2[[H, S+], S+]lO) 

(2(n-l)-(n-2))V,(S+)“]o) 

= +z(n--l)(S+)“-2[[H, Sf], s+]]o)+nVo(S+)“]O). 

Thus, if eq. (6) is satisfied, (S’)“lO) is an eigenstate of H with the eigenvalue 

En = nI’,++n(n-1)d. (8) 

We see that the simple dependence of eq. (1) on m = 2n follows simply from the struc- 
ture of the eigenstates (3) and holds even in the general case. Comparing eq. (1) with 
eq. (8) we see that for a single j-shell, V, = 2C+ cr+jI and A = 4a. 

It is important to realize that in the general case there exists no simple scheme 
based on Sf as in the case of a single orbit or degenerate orbits. If we start from two 
orthogonal states 11) and 12) and operate on them with S+, the states obtained, 
S’ll) and S’IZ), need no longer be orthogonal. The reason is that, unlike in the 
degenerate case, [S+, (A’+)‘] is not the simple number operator (plus a constant). 
Nevertheless, the ground state energies have the simple n-dependence of the seniority 
scheme. 

The binding energies of the even Ni isotopes (both experimental and calculated) 
are given very well by eq. (8). For example, the calculated binding energies of 58Ni 
to 66Ni minus B.E. (56Ni), are very well reproduced by V, = 22.8 MeV and 
A = - 1’.88 MeV (here negative means repulsive). The ground state of “Ni was 
found to be given by “) 

S+ = 0.275S;+O.l57S; +O.l58S,ft. (9 

The overlap between the ‘joNi ground sta e t and (S’)210) with S+ given by eq. (9) 
can be computed and turns out to be higher than 99 %. It seems that the effective 
interaction constructed to give the best fit for the Ni isotopes can be well approxim- 
ated by a Hamiltonian which satisfies eq. (6). 

We shall now see what are the conditions on H which satisfies the condition (6). 
Let us first consider the situation in the simplest case. 
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3. A single j-orbit 

Let us consider pair creation operators, in addition to Sj”. The operator 

acting on the vacuum, creates a pair of nucleons in the&orbit coupled to J and M. 
Due to the symmetry properties of the Clebsch-Gordan coefficients, the only non- 
vanishing operators (10) have even values of .J. The state ~~(~~~10) is normalized 
which follows from the commutator 

[A( j’J&f), A+( j’J’M’)] 

= S,.S,,? -2 C (jm, j~~ljj~~~(j~~ j~~ljj~~~‘~a~~~~~~~ (10 
=1 

where 
A(jVkf) = I;Q’(j%!f)]‘. 

In fact, 

(O~~(~~)~~(~‘~‘)lO) 

= (Ol~~(~~), ~~(~‘~‘)]lO} -f- {O]~~(~‘~‘)~(~~)lO> = ~~~~~~~~(I 

A Ha~lton~an which has the eigenvahre Y(j’J) = F’, in the state obtained by eq. 
(IO) acting on the vacuum can thus be conve~e~tly wrjtten as 

H = &.p.+J,Vz ~~~i(j2~~~A(j2~~~. (12) 

We can now calcufate the double commutator of I& ST and ST. The single-particIe 

part KP. contains only products of a creation operator and an annihilation operator. 
Therefore &&,,, ST] contains only products of two creation operators and thus 
commutes with ST. Since &“(JM) commutes with 5’; we have to calculate [[A( JM), 
ST], ST]. Recalling that S; = 42(2j+ l)Ai(j2J = 0, M = 0) and using eq. (11) 
we obtain 

[[A( j”JM), $1, $1 = -242 x (jm, jm2] jj~~)( -)i-ml[aj+_,, ajm2, Si] 
ml 

= -445 c (-)“-“( jna, jwr,\ jj~-~)a~~~ a&, I= -8(- l)J-MAi( j2J-44). (13) 
Illlrn2 

Using eq, (13) we obtain the double commutator in the form 

[I$ Si”], S,“] = --gJG V,(-1)“-“A”(j~~~)A’(j2~-~). (14) 

The phase vector ensures that eq. (14) is the scalar product of A’ (j’, JM) with itself. 
The condition (6) in the present case can thus be written as 

-8~~,~,,(-)~-~‘A~(j2~~~‘)A+(jz~‘-~’) = d(S,+)‘. (15) 
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In order to derive the conditions on the matrix elements V, we multiply eq. (15) on 
the left by (- 1)J+“A(j2 J-M)A(j2JM), sum over M and take the vacuum expec- 
tation value. After successive applications of eq. (11) we obtain 

-8 c v’,( - l)J’-“‘+J+M(GJJ, ~,,J+~JJ*~M, -M’ 

J’MM’ 

$4 C (jm, jm21jjJM)(jm1jm31jjJ’M’)(jm4 jmsljj.I-M)(jm, jm,ljjJ’-M’)) 
rnlrn2rn3rn~ 

= (4(2j+I)6,,-8(25+l))d. 

The sum over the products of four vector addition coefficients gives a Racah coeffi- 
cient and the conditions become 

-8 (2(25+l)VJ+4(25+l)F(25’+I) (: ; i,] VJ,) = 4d((2j+1)6,,-2(25+1)). 

(16) 
Thus, for every J > 0 (J even) we obtain 

vJ+2 c (25’+1) 
J’ even 

VJ, = $A J > 0 even (17) 

while for J = 0 the relation is 

Vo+2J,ze(2J’+1) (i f 59) VJ, = -iA(2j-1). 

It is shown in the appendix that any interaction which is a sum of products of odd 
tensor operators satisfies eqs. (17) and (18) with A = 0. The reverse is also shown to 
be true; any two-body interaction satisfying eqs. (17) and (18) is an odd tensor inter- 
action plus a k = 0 rank term which gives rise to a +m(m - 1) term in all states of the 
j” configuration. These results were proved long ago ‘) but the derivation given in 
the appendix is much simpler. 

4. Several j-orbits 

Let us consider now the general case in which the nucleons can be in severalj-orbits. 
We shall consider the conditions that a Hamiltonian H satisfies condition (6) where 
S + is given by eq. (2). The Hamiltonian is a generalization of eq. (12), namely 

H = K.p.+ c V(j, j2 j3 j, J)A+(j, _h JW4_h h JW. 
it 6iz, is6jdM 

In eq. (19) we use the notation 

(19) 

A+(jl j2 JM) = 2 (j, ml j2 mljl .b JM)aj:,, a& 9 
mimz 

jl Z h. (20) 

Forj, # j2 the states A+(j,j, JM)IO) are normalized. To make things definite we use 
the definition (j,j, JMI V121j3j4JM) = V(jljzj3j4J) for j, 5 j, and j, S j,. If 
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there are several orbits with the same value ofj, we introduce some additional ordering 
of them. 

In order to calculate the double commutator we start with [.4(j,j,JM), ST ) in the 
case j, # j,. If j, = j, then this commutator vanishes unless j = j, = j, in which 
case it is given by eq. (11). If j, # j, we obtain 

+26jj.f C 0, ~3j4~41j3j4JM)(-)j4-"4Qj+4-n14~ja~n,.(21> 
ntml4 

Taking the commutator of eq. (21) with Sj, we obtain 

C[4j3j4JWy S,"], S:l 

= -46j~,5~j,(-1)J-MA+(jj’J-M)-48jj4~~j,(-1)J-MA+(j~f-M). (22) 

We see now that this relation holds also for the case j, = j, in which it becomes iden- 
tical to eq. (14). 

We can now write explicitly the condition (6) as follows 

- 8 C V( ji j; j; ji J’)( - 1)J’-M’14+( j; j; J’M’)A+( jj ji J’ - M’)mfa aj,, 
j’l jf2?3 s j’4 

J'M' 
= d ~a~(Sif)‘+24 x ajaySTS>. (23) 

i jcj 

The relation (23) contains many conditions on the matrix elements of H and 
the amplitudes aj. To obtain them explicitly we multiply eq. (23) by (- lrfM 

4j3j4f-W4jxj2J1M), sum over M and take the vacuum expectation values. If we 
choose j, = j, = j, = j, = j we obtain the conditions (17) and (18) for every 
j-orbit for which Nj does not vanish. Thus, a necessary condition for the validity of 
generalized seniority in the sense of the present paper is that the Hamiltonian within 
each j-orbit should be diagonal in the seniority scheme. Moreover, the coefficient of 
the quadratic termin the ground state energies of each j-orbit must be the same and 
equal to 44. According to (30.1) of ref. “) we obtain for d the expression, which 
should hold for all j with aj # 0, 

(2Jfl)V(j2j2J)-V(j2j2J = 0) . (24) 

Next we consider the case with j, = j, L= j and j, = j, = j’. Multiplying eq. (23) 
by (-l)J+M A(jjJ- M)A( j’j’~~), summing over M and taking the vacuum expec- 
tation values we obtain relations involving two kinds of matrix elements. One kind 
has j; = j; = j, j$ = ji = j’ but there are also terms of another kind for which 
j; =jj =j,j; = ji = j’ (we assume j s j’). The conditions obtained in this case are 

-8(a~+a~)(2J+l)V(j2j’2J)+16ajaj.(2J+1)~(2J’+1) (;, $ T) (-I)“‘-“’ 

X V(jj?j’J’) = 4C%jaT dJ(2J-F 1)(2J’+1)aJo. (25) 
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Let us first see the condition which is i~homogeneous in the matrix elements Y.,. For 
J = 0, we obtain from eq. (25) 

Condition (26) is a relation between the non-diagonal matrix element l’(jZj’2J = 0) 
= <j’J = 01 Ylj’2J = O> and the diagonal elements in the jj’ configuration. The 
Iinear combination of the later ones which multiplies ajOl~ on the left-hand side of 
(26) is the interactiou between onej’ pair, with J = 0, and onej’2J = 0 pair. Another 
linear combination of matrix elements which appears in eq. (24) is d given by eq. (24). 
The coefficients of matrix elements in eq. (26) are products of the amplitudes olj which 
in turn are determined by the diagonafization of the two particle Hami~tonian. 

We can now check and see to what extent does the effective Hamiltonian used for 
the Ni isotopes satisfy the conditions (26) as well as eq. (24). First we notice that the 
parameter $4 determined from ground state energies to be -0.47 MeV (i.e. repulsive) 
is in agreement with the coefficients of the quadratic terms in the 2p+ and If% orbits 
within their quoted errors. These are given in table 2 of ref. “> as ‘d_t = -0.52f0.15 
MeV and a+ = -0.35 + 0.10 MeV respectively. The non-diagonal matrix elements 
are given there as V(jzjt2J = 0) = Vjy and the interaction between one j2J = 0 
pair and a j” J = 0 pair is ~j~ of ref. “) multiplied by 2. The amplitudes OIJ and Kj 
of ref. 6) are given in eq. (9). We can thus construct the 1.h.s. of eq. (26) and compare 
it with ej 01~ Li. The comparison is demonstrated in table 1. 

TABLE 1 

Comparison of 1.h.s. of eq. (26) with a,~ d 

i j CrJaJ~ i.zJ2 + o”J2 -2vf,N(wbl) @j’s_1) 2 wJJ* 1.h.s. of eq. (26) AiXJWJ 

:: O&432 0.0432 0.100 0.101 -0.45~0.05 -0.73&0.07 -1.18~0.20 -0.24rto.40 -0.096~0.010 -0.084~0.018 -0.08 -0.081 I 

3 % 0.0248 0.050 -0.35~0,15 -1.12&0.35 -0.045+0.012 -0.047 

The various matrix elements appearing in table 1 are given in MeV. As we notice, the 
values in the last two columns of that table agree within the quoted errors. It is thus 
clear that in spite of the amplitudes in eq. (9) not being equal, it is possible to find an 
effective Hamiltonian which obeys eq. (26) as well as eq. (6) and gives a good fit to 
the experimental data of the Ni isotopes. 

Let us turn now our attention to the homogeneous conditions obtained from eq. 
(25) by taking J # 0. These conditions are 

J > 0 even. (27) 
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In order to understand the physical meaning of (27) we look again at the condition 
(6). It implies, in addition to the conditions (24) and (269, that the matrix elements 
of H connecting the state (s’)‘]O> with other J = 0 states should all vanish. For 
example, the matrix element connecting it with the s~tej2(2~jz(2)~ = 0 should be 
zero. The components of (S”)2]O> which for a general H can have such matrix ele- 
ments arej4(0),j2(0)jr2(0) andj’4(0). The amplitudes of these components are pro- 
portional to tl;, ajzj* and c$ respectively. By using the standard methods of spec- 
troscopy [e.g. as given in ref. ‘)I it can be shown that (27) is proportional to the matrix 
element connecting (S+)‘]O> and the j2(2)j’2(2)J = 0 state. In ref. “) it was as- 
sumed that the condition (27) is satisfied which implied a certain condition on 
ff(jzj'2J = 2) and the ~(jj’jj’~). In ref. ‘) such matrix elements were explicitly 
introduced and we can see whether their values satisfy eq, (27). Only the case j = Q, 
j’ = 3 should be checked since there is no state j2 J = 2 for j = +. From table 1 of 
ref. ‘) we compute the 1.h.s. of eq. (27) and find that it is consistent with zero. 

More homogeneous conditions on the matrix elements can be obtained from (23) 
by using other values of jX, j,, j, and j,. For example, if we take j, = j, = j, = j, 
j, = j’, we obtain the condition 

V(j2jj’J)+2 C (2J’-t-1) (: ;, “;f V(j’jj’J’) = 0, 
f’ eYea 

which is independent of the values of the amplitudes ctj and aj,* This condition means 
that the matrix element connecting the state (S’)“]O) to the state j”(j’)j’J = 0 must 
vanish. The matrix elements connecting the latter state with thej4(0) and thej2(0)j” 
(0) components are both proportional to eq. (28). Such a condition is satisfied for 
any Hamiltonian if there is no state with J = j’ in the j3 configuration. This is always 
the case if j’ = 3. In addition, for any interaction containing in its expansion only 
tensors with odd ranks and zero rank the matrix element (28) vanishes. This is due to 
the fact that the state j3.T = j’ has seniority v = 3 and therefore it cannot be a (frac- 
tional) parent of the j4J = 0 state with v = 0. Also this matrix element turns out to 
be small if two-body matrix elements from ref. ‘) are used in its computation. 

Other conditions can be derived but they will not be given here. We shall only list 
additional matrix elements which must vanish for (S”)210) to be an eigenstate of the 
Hamiltonian. The states j2(J,)j’j”(J,)J = 0 do not appear in (S’)2]O) and thus 
the matrix elements connecting them should vanish. These matrix elements involve the 
j”(O), the j”(O)j’“(O) and the j2(0)j”2(O) components of (S’)210>. The states 
~‘(~~)j”j”‘(~~)~ = 0 should also have vanishing matrix elements with (S+)210> 
which may occur through components of the type j2(0)j’z(O) orjz(0)j”2(O). All these 
states have very small matrix elements with (S’)210> of ref. ‘). This is evident from 
the rather small admixtures of these states found in the calculations of refs. 7* “) (in 
some cases less than 1 % in probability). 
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5. Other nuclei and pseudo-nuclei 

There are other shell-model calculations, in addition to those for the Ni isotopes, 
where the binding energies obey the law (1) in spite of rather strong configuration 
mixing. The configurations with 2p+ and 1% nucleons offer such an example. The 
special behaviour (1) of the calculated binding energies led to the following observa- 
tion I’): “ . . . this feature could lead to the simple yet wrong conclusion that these 
J = 8 states belong to pure configurations, say pig;-” . . . their energies could be 
well reproduced by eJ$stiue two-body forces which have the same matrix elements 
in the nuclei considered “. The conclusion was then drawn that “this example 
demonstrates clearly the fact that shell-model wave functions may well include cvn- 
siderable admixtures of other con~gurativns”. 

A more dramatic case with very large admixtures was found in a group of fictitious 
nuclei given the name of pseudonium 14, ’ “)_ The behavivur of ground state energies 
was found to be in agreement with eq. (1) and also excited states and transition 
probabilities resembled very much those in a pure con~guration. On the basis of the 
present paper we can understand some features observed in these cases. We can also 
demonstrate how such cases may be distinguished from those of pure shell-model 
configurativns. 

The spectra of nuclei with the closed shells of 50 neutrons have been extensively 
analysed, From proton number 38 the 2p+ and I& orbits are being filled. In one paper 
[ref. ““)I the ground state of the two-proton con~gurativn in ‘*Zr was found to con- 
tain 60 “/, of the p:(O) state and 40 % of the g;(O) state. Nevertheless, binding energies 
of nuclei with proton number n = 3 and higher were found to be given very well by 
eq. (I) [ref. ““)]_ We can check and see whether this behavivur is indeed due to the 
effective Hamiltonian obeying eq. (6). In this simple case, the only conditions to be 
satisfied are eqs. (24) and (26). The amplitudes of S’ are obtained from ref. 16) as 

% = 0.388, bcp = 0,142 and are obviously very different from the case of a pairing 
interaction where they would have been equal. The small vaIue of CC~ in comparison 
with CC~ is due to the rather large difference in the single-nucleon energies. The nvn- 
diagonal matrix element is given as V+ i? = 0.863 MeV while the interaction between 
a g:(O) pair and a p@) pair is - I.76 MeV. We first notice that the coefficient of the 
quadratic term, found in ref. I2 ) to be d = -2.53 MeV is very close to the coefficient 
cx of ref. 16) multiplied by 4, namely 4a = -2.49 MeV. Next we compute the left- 
hand side of eq. (26) obtaining -0.163 MeV. It is indeed equal within several percent 
to the computed right~hand side of eq. (26) which is -0.139 MeV. 

The case of the pseudonium isotopes is more spectacular. The single-particle states 
considered are the Id, and If, orbits. In the analysis of ref. 14) the energies were cal- 
culated including the strong effects of con~g~rativn mixing, Then they were considered 
as input for analysis in terms of pure fS configurations, starting with 4oPs which has 
four nucleons in the two shells considered. In spite of the fact that in 4oPs only about 
IO % of the wave function is in the d$ configuration, the ground state energies of 41Ps 
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to 48Ps obey very well the simple expression (1). Also here it seems that the results of 
configuration mixing give rise to simple ground state wave functions (3). Using the in- 
teraction of ref. 14) we obtain V* i = 1.846 MeV and cld = 0.234, ur = 0.187. The 
interaction between a da(O) pair and a f:(O) pair turns out to be 5.02 MeV (in contra- 
diction to the situation in real nuclei it is attractive). The 1.h.s. of (26) can now be com- 
puted and found to be 0.160 MeV. The coefficient of the quadratic term can be com- 

Fig. 1. Pair separation energies in pseudonium isotopes. 
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Fig. 2. Neutron pair separation energies in calcium isotope?. 

puted using the energies in ref. ’ 5), and is found to be A = 3.12 MeV. Hence, the 
right-hand side of eq. (26) turns out to be 0.140 MeV in agreement with the value 
computed for the 1.h.s. The coefficient of the quadratic term in the d, configurations 
can be computed, according to eq. (24) and turns out to be 3.07 MeV in good agree- 
ment with the value of A. The corresponding coefficient in the fS shell turns out to be 
only 2.77 MeV. Since the interaction of ref. 14) is overall attractive, the matrix element 
connecting dt(2)fi(2)J = 0 state with (S’)210) cannot vanish. Its effect is rather 
small since the probability of this u = 4 state in the exact four-nucleon ground state 
is less than 3 %. In spite of these discrepancies it seems that the states (3) are good 



12 I. TALMI 

approximations to the pseudonium ground states. It would be interesting to see 
whether the other properties of these states follow from the simple structure given 

by eq. (3). 
Once we realize that in the cases considered in this section the ground states can be 

described by eq. (3), a very important result emerges. The behaviour (8) of binding 
energies should hold throughout the region defined by all the j-orbits. The special 
linear and quadratic dependence of binding energies with the same coefficients must 
hold beyond the artificial limits imposed on it in pseudonium type examples. It should 
be possible to extend the good fit of binding energies in the region beyond 90Zr also 
for 90Zr itself. An expression like (8) if it covers well all the region where both 2p, 
and lge orbits are being filled could certainly not have been interpreted as due to a 
pure shell (h+?) Indeed, we find from the analysis of ref. I’) that according to eq. (8) 
the difference of binding energies of “Zr and **Sr should be 15.11 MeV. This value 
is in fair agreement with the calculated value in ref. 16), namely 15.46 MeV (the ex- 
perimental value is 15.44 MeV). There is no break in the pair separation energies in 
spite of the lg, single-nucleon energy being much higher than that of the 2p+ orbit. 
This fact clearly demonstrates that the configuration mixing encountered here takes 
place according to eq. (3). 

The same situation holds in the case of the pseudonium isotopes. The simple de- 
pendence (8) on nucleon number holds not only from 4oPs to 48Ps but from 36Ps to 
48Ps. There is no break at the “pseudo-magic” shell of 40 in the pair separation ener- 
gies. This is graphically demonstrated in fig. 1. The actual binding energies of 4oPs 
and 38Ps, relative to 36Ps turn out to be 13.52 and 4.97 MeV whereas the extrapola- 
tion from the fit to eq. (8) in ref. i5) gives for these energies 13.57 MeV and 5.16 MeV 
respectively. The actual situation in real nuclei, like the Ca isotopes is shown in fig. 2. 
The large breaks in pair separation energies clearly indicate that between neutron 
number 20 and 28 there are no configuration admixtures given by eq. (3) to the f; 
states. 

It should be stressed that breaks in the simple dependence of eq. (8) by no means 
indicate the absence of configuration mixing. Such breaks exclude specifically con- 
figuration admixtures according to the very special prescription (3). There certainly 
are configuration mixings whose effects can be cast in the form of a modification or 
renormalization of the two-body interactions within a given configuration. Such ad- 
mixtures are considered in the various many-body theories of nuclear structure and 
are, in fact, the basis of the whole approach of effective interactions. A very simple 
case of configuration mixing which leads to modified two-body interactions was dis- 
cussed in detail in ref. ‘). It is the case in which two nucleons are excited to a higher 
configuration and the admixture can be treated in second order of perturbation theory. 
It may be instructive to consider such a case in a simple example involving thej’“(0) 
and j’“-‘(O)j”(O) configurations forj’ = 3 and a Hamiltonian obeying the condi- 
tions (6). Let us define a to be the sum of single-particle energies and the interaction 
energy of aj”(0) pair. The total energy of aj”(0) pair will be denoted by b and then 



SEMI-MAGIC NUCLEI 13 

the energy of the J = 0 zi = 0 state of thej2” con~guration is nb + jdn(n - I). The inter- 
action between aj2(0) pair and aj’“(0) pair will be denoted by w. The lowest eigen- 
value of the Ha~lto~an for 2n nucleons will be, according to eq. (8), n V, + $&(n - 1). 
Thus, we obtain in the case of 2n nucleons the following conditions on the Hamilto- 
nian matrix 

( 

(a-KJ+(n-l)(b-V,)+(n-l)(w-A) 
n(2jf3-2n) v 

2jfl ‘j ‘n =: 0, 

d 
n(2j+3-2n) 0 YB 

2j+l 
v,, +- vb) 

If we use perturbation theory we obtain 

XJI _ = n(2j+3-2~) V, j 
YSl 2j+l b-a-(n-l)(w-dj 

(28) 

(29) 

If now the energy denominator is independent of n, eq. (29) gives rise to a renormali- 
zation of the two-body interactions in j2” configurations which is independent of n 
[e.g. (37.45) of ref. “)I. Th e exact solution, however, as computed for instance by 
using eq. (3), is quite different, namely 

x, -_= li f@j+ 1) v-j 
Yll 2j+3-2n V,-n’ m-9 

The n-dependence of (30) is certainly not consistent with a moditication of the two- 
body interaction in jzn coniigurations which is the same for every n. The reason for 
the difference in behaviour is due to the fact that if eq. (6) is obeyed throughout the 
region, it is impossible to assume that the energy denominator in eq. (29) is indepen- 
dent of n, In fact, if we consider the j2jf 1 ‘f2 J con~guration in which both orbits are 
completely filled, we obtain, using eq. (8), 

~(2j~l)~~~(2j~l)(2j-l~~+u+~~2j+l)w = ~(2j~3~~~+~(2j+3)(2j~l)~. 

This can be written (or simply taken from eq. (28)) as 

(2jf X)(b- V,)+2(a-- V,)-l-(2j+ l)(w-A) = 0. (31) 

The condition (31) is one of the explicit conditions which follow from eq. (6). Using 
condition (31) we obtain, for the energy denominator in eq. (29) the expression 

b-a-(n-l)(w-d) = n(b-V*)- 2j;&2n (U-V,) 

which has a very definite n-dependence. In other words, putting w-d = 0 is incon- 
sistent with the condition (31) (and therefore with condition (6)). Since V, should 
not be higher than both a and b, (2j+ 1)(b- V,)+ 2(a- V,) = 0 implies a = b = V, 
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and Vt_j = 0. Configuration mixing according to eq. (3) cannot be considered as a 

perturbation throughout the whole region (if 2n < 2j+ 1 it is possible to make eqs. 

(29) and (30) approximately equal). 

6. Why do Hamiltonians with effective interactions obey conditions? 

The question which now arises is why does the Hamiltonian constructed for the Ni 

isotopes satisfy condition (6). As we saw in sect. 4, the conditions (6) do not involve 

only the matrix elements of the effective two-body interaction. The amplitudes of the 

various orbits appear explicitly in those conditions and they, in turn, are largely deter- 

mined by the single-nucleon spacings. It is true that also the latter are determined in 

a complicated way by the nuclear interaction and therefore the condition (6) is a very 

involved relation between very many matrix elements of the nuclear interaction. It is 

however, very difficult to imagine that condition (6) with the variousj-orbits consid- 

ered has in it so much information and restrictions on the nuclear interaction. 

As explained above, if we start from ground states of the form (S+)“(O) which give 

the form (8) for binding energies, then the conditions (6) follow. An interesting ex- 

planation would emerge if any shell-model Hamiltonian which exactly reproduces 

the linear and quadratic dependence of binding energies should also satisfy (6) and 

give rise to ground states given in eq. (3). If this were the case, then any effective inter- 

action which must fit well binding energies of nuclei in a certain region should be 

constructed in such a way that condition (6) is satisfied. The problem then would be 

to choose a sufficiently large set of single-nucleon orbits so that the states (S+)“]O) 

will span the whole region considered. Any breaks in the regularities of binding ener- 

gies will indicate the termination of such a region and the necessity to go over to a 

new set of single-nucleon orbits. 

We shall now consider this possible relation between binding energies and ground 

states. It means that a quadratic (and linear) dependence on n of binding energies 

implies a Hamiltonian which satisfies (6) and ground states given by eq. (3). Let us 

first note that this relation is true for a singlej-orbit as well as for the case in which the 

aj in eq. (2) are equal (i.e. degenerate single-nucleon energies and the pairing inter- 

action). In these cases, any two orthogonal states 11) and (2) give rise to two ortho- 

gonal states S +I 1) and S+]2). 

Let us start with eq. (4): 

M+(O) = V,S’lO) 
and 

E, = nV,+$z(n-1)d. (32) 

In general, the double commutator can be written as 

[[H, S’], S’]]O> = 1(S+)2]O)+B+]o), (33) 

where B+IO) is a four-particle state orthogonal to (S’)2]O>. Consider now the closed 

shells where all orbits which contribute to S+ are completely filled. The only state 
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of this configuration is proportional to (S’)NIO) where 2N is the number of nucleons 
in the closed shells. Using eq. (7) we obtain 

H(S+)N/O) = NV,(~+)N/O)+I~N(N-l)(S+)N~O)f~N(N-1)(S+)N-28+~O>. 

(34) 

The last term in eq. (34) vanishes since (S’+)N-2B+IO) is orthogonal to the only anti- 
symmetric state (S+)NL2(S+)210) = (S+)NIO>. 

We then obtain, by comparing eq. (34) with eq. (32), J = A. From this and the 
variational principle it follows that (S”~iO) is an eigenstate of H since 

<Ol(S+)“+H(S+)“jO) = nVo(O~(S+)L+(Sf~]O)+~~(n-l)d(O~(S+)”+(S+)”~O> 

+&@-1)(0~(S+)“+(S+)“-~B+(0) = E,(Ol(S+)“+(S*~lO). (39 

Therefore, B+IO) = 0 in (33) and the condition (6) is satisfied. 
In the general case, such arguments do not work since, as mentioned above, Si 1 I) 

and 5” 12) need not be orthogonal even if II) and 12) are. Moreover, it will be shown 
that not in all cases do linear and quadratic binding energies lead to an effective 
Hamiltonian satisfying eq. (6). Let us now consider the case of twoj-orbits where we 
can see such a counter example. The nature of this example, however, possibly in- 
dicates why a Hamiltonian satisfying condition (6) and wave function (3) are still 
favored. 

In this example to be discussed there are two orbits, j andj’, and the Hamiltonian 
is similar to that of ref. “). Thus, we will take the seniority to be a good quantum 
number within the j-shell and j’-shell. Furthermore, the only non-diagonal element 
which can mix con~g~ations will be t/ = (j2 J = 01 Vlj“ J = O}. Hence, there is 
only one state of thej2” con~guration which appears in the energy matrix for J = 0, 
namely the one with ZI = 0. The energy of this state is given by nb+&z(n- 1)B. Here 
b is the energy of the J = 0 state of thej’ configuration including both the interaction 
energy and the two single j-nucleon energies. The energy of the corresponding state 
of thej’2” configuration is given by na + $z(n - 1)a. The non-diagonal elements which 
will appear in the J = 0 energy matrix have the form 

<j’“(O) j'2n'(0)l C i$,lj2"-2(0) jfzn'+'(0)) 

= n(2j+3-2n)(n’fl)(2jr+1-2n’_! cj2J = o,v,jt2J 

(2jf 1)(2j’+ 1) 
= 0). (36) 

Another element needed for completion of the interaction matrix is the interaction 
energy between a j2 J = 0 pair and a j” J = 0 pair. This is the linear combination 
1~ = Wjj, which appears in eq. (26). 

We shall now see under which conditions is the lowest eigenvalue of 2n nucleons 
in the j- andJ’-orbits equal to nV,+&z(n- 1)A. Let j be greater than j’ so that for 
PI 2 $(2j’+l)the J = 0 energy matrix has a fixed order, namely *(2j’ + 3). The con- 
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figurations which appear in it arej’“, j2n-2jr2, jZnd4jt4, . . . j2n-(2i’+1)j’2j’+1. Due 
to the special structure of the non-diagonal elements (36), the only n2 dependence 
appears in the +/5z(n- 1) term. For j sufficiently larger than j’ (we shall not discuss 
this point here) it can be shown that A must be equal to /I which agrees with the con- 
dition (24) derived from condition (6). 

Another condition follows from considering the case 2n = 2j+ 1+2j’ + 1, when 
both orbits are completely filled. There is only one state in this configuration and its 
energy is given by 

+(2j+ l)b+*(2j+ 1)(2j- l)fi+$(2j’+ l)a++(2j’+ 1)(2j’- l)a+$(2j+ 1)+(2j’+ l)w 

= +(2j+l+2j’+1)V0++(2j+2j’+2)(2j+2j’)A. 

From this follows the condition, which is a generalization of (31), 

~(2j+l)(b-V,)+~(2j’+l)(a-V,)+~(2j’+1)(2j’-l)(a-A) 

+$(2j+ 1)(2j’+ l)(w - A) = 0. (37) 

Now we shall consider the simple case of n = I in which the energy matrix satisfies 
the equation 

This implies the standard conditions 

(b- v,)(a- v,)- v2 = 0 (38) 

and 

x V I/,-b -_=-= 

Y v,-a -7 
w-9 

Equipped with eqs. (37), (38) and (39) we can look now at the more complicated 

case of n = 2. The matrix in the present case satisfies 

(2(u-V,)+(a-A) 
v 2(2j’-1) 

li 0 
2j’+l ‘( ’ < 

V d ‘@+-;) (b-V,,)+(u-Vo)+(w-A) V li z q = 0. 

\ 0 v 1/ 2(2j-1) 
2j+l 

2(b-V,-J , I 5 / 

If indeed (S’)‘lO) is an eigenstate, then the solution of (40) has the form 

r = 2(2j’-1) 
X2, ? = 2XY, 

5 = 2(2j-1) 2 

2j’+ 1 
-----Y * 

2j+l 

(401 

(41) 
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It can be easily verified that eq. (41) is a solution of eq. (40) if and only if a = A. This 
follows directly from eq. (39) for the equations involving 5, q and q, c. The third 
equation in eq. (40) can be shown to hold if we make use of eq. (37). Let us therefore 
try to prove that u = A. 

Eliminating <, q and 5 from the three equations, making use of eqs. (37), (38) and 
(39) we obtain the condition of the vanishing of the determinant in eq. (40) in the 
simple form 

(a-A)[2(2j+l)(b-Y,)-2(2j’+l)(a-V,)-(2j’+l)(a-A)] = 0. (42) 

This equation is of course satisfied by Q = A as it should since c1 = A is one of the 
conditions (6). In order to see if a = A is a necessary condition, we consider finally 
another case, that of a pair missing from closed shells, i.e. 2n = 2j+2j’. The van- 
ishing of the determinant 

( 

V,,-a-+(2j+l)(w-A)-+(2j’-l)(a-A) V 
0 

V V,-b-+(2j’+l)(w-A) = 1 

leads by use of eq. (37) to the condition 

(a-A)[2(2j+I)(b-V,)-2(2j’+I)(a-V,)-(2j’+1)~(2j’-l)(a-A)] = 0. (43) 

Comparing (43) with (42) we see that a = A follows unless +(2j’- 1) = 1 and j’ = 5. 
In all other cases a linear and quadratic dependence of the eigenvalues leads to CI = A 

and (41) is satisfied. As we saw above, this implies that condition (6) is obeyed and 
all ground states are given by (S’)“lO). 

The case j’ = 3 is indeed an exception. It can be shown that no matter how large 
j is, we do not obtain stricter conditions on the matrix elements. The other possibility 
in (42) and (43), which for j’ = 3 is 

(2j+l)(b- V,)-4(a- V,)-2(a-A) = 0, (44) 

leads to linear and quadratic binding energies in n but not to eigenstates (S+)“lO). 
There are other exceptions if j is not sufficiently larger than j’. If for example, j’ = 3 
and j = 3, then the condition on binding energies does not lead to A = /I but to 

(/I-A)[2(b- V-,-J-(u- Vo)+@-A)] = 0. (45) 

Thus, for j’ = + and j = 3 we cannot concluce that /l = A (there is no c1 in the case 
j’ = 3). 

As we see, the special n dependence (8) of ground state energies does not neces- 
sarily lead to the conditions (6). Since any Hamiltonian satisfying eq. (6) gives rise to 
the binding energies (8), the conditions (6) are always a solution to any conditions 
derived from eq. (32) like eqs. (42) and (43). If the energies (8) should be obtained 
from a Hamiltonian with effective interactions there are many cases in which the con- 
ditions (6) must be satisfied. If there are other alternatives, they imply other compli- 
cated conditions on the matrix elements like eqs. (44) and (45). Trying to find an 
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effective Hamiltonian to tit the binding energies (8), one uses a least-squares fit to the 
data. This can lead either to the region of matrix elements where (6) is satisfied or to 
another region where, for example (44) is satisfied. If, for physical reasons the region 
where eq. (6) is satisfied gives a better description of the data than the other choice, 
the conditions (6) must be exactly satisfied. The two regions of matrix elements, the 
one where eq. (6) is satisfied and the other where other conditions like (44), are satis- 
fied, have a common point. This is where the Hamiltonian is the pairing interaction 
and the single-particle energies are degenerate. This is obvious in (44) and in (45) 
and is true in general. As was mentioned above, for this special Hamiltonian, the 
dependence (8) of binding energies leads to (S *)“lO> being eigenstates and condition 
(6) being satisfied. Therefore, the two kinds of conditions must reduce, in this case, 
to the same conditions. Apart from this special case, there is no overlap between the 
two retions. If the matrix elements are near the region where (6) is satisfied, the n- 
dependence (8) of binding energies forces the effective Hamiltonian to satisfy con- 
dition (6) exactly. It is impossible to make in this case small changes in the matrix 
elements which will violate eq. (6) while eq. (8) will be strictly obeyed. 

Effective Hamiltonians give good agreement with many more data than the binding 
energies. This is a success of the shell model which thus gives a consistent picture. The 
fact that such Hamiltonians do satisfy condition (6) and that ground states are given 
by eq. (3) are largely dictated by the special n-dependence (8) of binding energies. 

7. Odd-mass nuclei and J # 0 states in even nuclei 

As mentioned above, in the general case there is no scheme which is like the seniority 
scheme in a single j-orbit or in the degenerate case. The only state for which it was 
possible to extend the results of the seniority scheme was the state (3) which cor- 
responds to the state with seniority u = 0. We shall now consider other states which 
correspond to seniority u = 1 in odd-even nuclei, and seniority v = 2 in doubly even 
nuclei. Also for these seniorities it is possible to define one state with any given J 
which has a simple structure. 

We start with an operator which when acting on the vacuum creates a state with u 
identical nucleons coupled to a given value of J which is different from zero, One such 
operator is simply aTm which creates a single j-nucleon (a = 1). Another example is 
.4+(jlj2JM) which for J # 0 has o = 2 and is defined by eq. (20) or eq. (10). We 
take this state to be an eigenstate of H, namely 

HA +(u, J)/O> = qv, J)A +(v, J)lO>, J # 0. (46) 

The Hamiltonian is assumed to satisfy the conditions (6) so that the states (3) are 
eigenstates of N (with J = 0). The analog of eq. (3) in the present case is the state 
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where S + satisfies (4) and (6). Since J # 0, states of this kind are orthogonal to states 
(3). In order to see under which conditions is (47) an eigenstate, we start with n = 1, 
obtaining 

HSfA’(v, J)lO) = HA’(V, J)S’(O) = [H, Af(v, J)]S+IO)+A+(u, J)Hs+10) 

= [[H, A+(& J)], S+]IO)+S+[H, A+(% J)]lo)+ V,A+(U, J)S’lO> 

= [[H, A+(& J)], s’]lo>+(E(v, .J)+ KJ)S+A+(u, J)lO>. (48) 

It follows from eq. (48) that a necessary and sufficient condition that eq. (47), for 
n = 1, is an eigenstate of H is 

[[H, A+@, J)], S+] = [[H, S+], A++, J)] = AS+A+(u, J). (49) 

In eq. (49) we make use of the fact that S + and A+(v, J) commute and that the double 
commutator contains only creation operators. 

Now it can be shown that if eq. (49) is satisfied, in addition to eq. (46) the states 
(47) are indeed eigenstates of H. First we obtain by induction 

H(S+)“A+(u, J)lO) = 

n[[H, A+(u, .I)], s+](S+)“-‘IO)+(E,+E(Y, J))(S+)“A+(& J)lo>, (50) 

where En is given by eq. (8) [or eq. (32)]. In fact, eq. (50) holds for n = 1, as demon- 
strated in eq. (48). Next, it eq. (50) holds for n - 1, we obtain 

H(S+)V+(u, J)lO) 

= HA+(u, J)(S+)“lO) = [H, A++, J)](S+y(O)+A+(u, J)H(S+)“lO) 

= [[H,A+(U,J)],S+](S+)“-‘~O)+S+(HA+(~,J)-A+(U,J)H)(S+)“-~IO) 

+Jw+)“.~+(~, J)W 

= [[H, A+(u, J)], S+](S+)“-‘IO)+@-l)S+[[H, A+(& J)], ~+](LS+)“-~~O) 

-tE(u, J)(S+)“A+(u, J)IO)+E”(S+)“A+(u, J)lO> 

= n[[H, A+(u, J)], S+](S+)“-‘IO)+(E(u, J)+E,)(S+)“A+(v, J)lO>. 

If now eq. (49) is obeyed we obtain the result 

H(S+)Q+(u, J)lO) = (E(u, J)+E,+hz)(S+)“A+(u, J)lO>. (51) 

Let us now consider the conditions under which (49) is obeyed and first we consider 
the case of Y = 1 states in odd-mass nuclei. 

In order to find the explicit conditions (49) for AC(u = 1, J = j) = ai’, we evaluate 
the commutation relation of [H, S’], considered above and a;,. Starting from the 
explicit form of 

[[H, S’], aj+,] = 1s+aj+, , (52) 

we multiply both sides by operators of the form A(j,j, Jl Ml)Uj,,* and take the vacu- 
um expectation values. Taking first the case j, = j, = j’ = j we obtain conditions 
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which are linear and homogeneous in uj. These conditions, which involve matrix 
elements within the j2 configuration, are of the same kind as the conditions (16) 
considered above. If we take for instance, J1 = 0, Ml = 0 we obtain 

V(j”j”J = O)- 2~Jz (2J+1)V(j2j2J) = -Q(2j-1) (53) 
eve” 

for every value of j for which Uj # 0 and eq. (52) is satisfied. Thus, comparing with 
eq. (18) we find that if the conditions (6) are satisfied, eq. (53) is also satisfied with 
J. = 34. This completes the discussion of the u = 1 J = j state in the case of a single 
j-orbit. In the general case, with several j-orbits, however, there are more conditions 
to be satisfied if eq. (52) is obeyed. 

Next we put j, = j, = j’ and j’ # j as well as J1 = 0 Ml = 0. Multiplying both 
sides of (52) by A(j’j’J, = 0 Ml = O)aj, and evaluating the vacuum expectation 
values we obtain 

_4a W”j’“J = 0) +cr, 
~~~~~~~~~~~~~~~ ~~(2j+l)~2j,+l)~(2Jr+~)~(jj~j’J’) = ay21 = gj*d. 

(54) 

Comparing with the condition (26) above we see that eq. (54) can be satisfied only if 
a;, = Q; which is the case of degenerate j-orbits and the pairing interaction. In this 
case the single-nucleon energies need not be the same. It is sufficient that the diag- 
onal elements of the energy matrix of the two-nucleon system are proportional to 

2j+ 1 and the non-diagonal elements Vjj are proportional to J(2j+ 1)(2j’+ 1). The 
energies of the various u = 1 states behave like eq. (1) as follows from eq. (51) by 
putting m = 2n+ 1 and I = +A. Therefore, the spacings between the various u = 1 
J = j levels are independent of n and are given by E(u = 1, J = j). However, these 
properties hold only if the various amplitudes Clj are equal. Some of these features 
may be saved in the general case, with unequal amplitudes, if eq. (52) holds approxi- 
mately and is not satisfied exactly. We shall, however, not discuss here this possibility. 

Let us now consider the more interesting case of seniority u = 2 states in doubly 
even nuclei. The operator A+(v = 2, J) is a linear combination of operators (10) and 
(20) with amplitudes of the various j-orbits. As above, the magnetic quantum num- 
ber M will be usually suppressed. We shall take A+(v = 2, J)lO) to be an eigenstate 
of H, namely 

HA +(u = 2, J)lO) = ,!?(a = 2, J)A+(u = 2, J)lO). (55) 

Then we look at the condition (49). If that is satisfied, all states of the form (47) are 
also eigenstates of H whose eigenvalues are given by eq. (51). In the present case eq. 
(49) assumes the form 

[[H, A+@ = 2, J)], S+] = IS+_4+(u = 2, J). (56) 
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The algebra of evaluating the left-hand side of eq. (56) is more involved than in the 
case of condition (6). The various angular momenta should be appropriately coupi- 
ed. When this is carried out, both sides should be multiplied by operators of the form 
C(JrM,J~T21M,IJ1J2JIW)A(j,j,J,M,)A(j,j,J,M,,), a su~ation over M carried 
out, and vacuum expectation values evaluated. Let us first take the simple case in 
which jr ==jz=j3=j4=j,J1=OM1=OwhileJz=JMz=M.Thiscalcula- 
tion, with the j-orbit, carried out on the l.h,s. of eq. (56) yields 

- 8(2J+ l)(V(j”j”J = O)+ V(j”j”J)). (57) 

Recalling that the summation in eq. (57) is over even values of J’ only, wecan use well- 
known sum rules of Racah coefficients to obtain 

Inserting this expression in (57) we obtain 

*:+;1) F @Vi- 1)V(j5”J’)-8(2J+ 1) F (2J’+1) (; ; ;I V(j”j”J’) 

-8(w+l)V(j~2J = 0)-8(2J+i)~(j2j2J). 

Recalling relations (17) and (18) we obtain finally from the 1.h.s. of eq. (56) the simple 
expression 

8(2J+ 1)(*(2j- l)d -+A) = 2(2 J-i- 1)(2j-3)d. 

The r.h.s. of eq. (56) yields by using the techniques of sect. 3, the simple result 

2(2J+ 1)(2j-3)A. 

Comparing both sides we obtain the result 

a = .4. (58) 

The conditions (58) gives rise to a very important feature: the spacings between the 
ground state energy (8) and the energy of the state with u = 2 given by eq. (47) is 
independent of the number of nucleons, This simple characteristic of the seniority 
scheme within a j-orbit holds also here provided the condition (56) holds. In fact, 
we obtain from eq. (51) by putting A = d 

H(S*)“-‘A*+ = 2, J)lO> = (E(v = 2, J)sE,_, 

+(~-l~~)(~+~-l~~(~ = 2, J)/O>. (59) 
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The difference between the energy in eq. (59) and E,, is 

E(u = 2, J)+E,_% -E,+(n--1)A = E(v = 2, J)+(n-l)Vo+*(n-I)(n-2)4 

-~~~-~~(~-l)d+(~-i)~ = E(” = 2, r>- Ye. (60) 

The constant spacing which is observed in many cases, including the Ni isotopes 
emerges as a simple result of the condition (56). 

The other conditions which follow from condition (56) will not be derived here. 
The homogeneous conditions imply that the matrix elements connecting the state 
S +A *(z) = 2, J)lO) with four particle states which are not components of it must all 
vanish. Such other states are, for instance, j”( Ji)j”( JZ)J with J, and li different from 
zero. If the parities ofj andj’ are the same, other such states arej3(Ji)j’J for J, # j 

etc. The conditions which involve A imply certain conditions between matrix elements 
of H involving products of the various amplitudes in S + and A ‘(u = 2, J). All these 
conditions are rather complicated and will be investigated in a subsequent study. 
Another possibility which should also be considered is that the conditions (56) will 
be obeyed only approximately. In that case it may still be possible that the nice proper- 
ty (60) which in many cases is in agreement with spectra of actual nuclei, will still hold 
to a good approximation. 

The author would like to thank N. Auerbach, H. J. Lipkin and A. S. Rinat(Reiner) 
for very helpful discussions and to Shalom Shlomo for computing the energies of 
pseudonium isotopes. 

We shall first prove that any odd tensor interaction satisfies 

(A.9 

A two-body interaction can be expanded in terms of scalar products of tensor opera- 
tors within the space of the j-orbit: 

VI, = x Fk(@ - zp), (A.21 
k 

where u@) are unit tensor operators. From eq. (A.2) follows 
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Using the orthogonality properties of the Racah coefficients, eq. (A.3) can be in- 
verted into 

Another relation can be derived from the identity 

Multiplying it by (- 1) ‘jik’Fk’ and summing over k’, we obtain, recaIling eq. (A.31, 

For an odd tensor interaction (- 1)“’ = - 1 and we obtain in that case 

I-- c (253-l) (: ; ;} V;Odd- c (2&l) [; ; ;f Vidd. (A.7) 
J odd .I even 

Another relation for an odd tensor interaction is obtained from (A.41 by putting 
Fk = 0 for k even 

o =J5j2~+1) (j : :) ~;~~--;~r1(2~-+1) (: 3 Jk) V,“” for k even. (A.9 

Combining eqs. (A.7) and (A.g) we obtain eq. (A.1) 
Next we prove that any interaction which satisfies eqs. (17) and (18) can be ex- 

pressed as an odd tensor interaction to which a term with k = 0 has been added. The 
term with k = 0 has the same value for any V, and its contributions to all states of 
the j” con~gura~on are equal and proportional to J&z - 1). It can be most con- 
veniently expressed in terms of the number operator squared: 

AZ = ( C aJ:iljm)’ = C a,Laj,+ C aJ~a,~~ajm~aj,. (A.9 
m m mm’ 

The operator which is diagonal in any (number conserving) scheme, 

~A(&‘-@) = &i~ai:,~j$aj~eaj~ = ~A~Ai(j~J~~A(j2J~~ (A.10) 
mm’ 

contributes $A& - I) to any state of the j” configuration, If we subtract from the 
Hamiltonian the operator (A. 10) we obtain a Hamiltonian which leads to the condi- 
tions (17) and (18) with a vanishing right-hand side. 
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If we write VJ = cd” + V;Y,, we obtain in that case from eqs. (17) and (18), using 
eq. (A.l), the condition 

J even. (A.ll) 

For an even tensor interaction (A.6) can be written as 

VI” = c (2k+l) (: ; ;) I$-“=‘+ C (2k+l) (; ; :) V;ven. (A.12) 
k odd k even 

We can now use eqs. (A. 1 I) and (A. 12) to eliminate the summation over even values 
of k thus obtaining 

Comparing eq. (A. 13) with eq. (A.3) we see that VT? for even J can also be expand- 
ed in terms of scalar products of odd tensors (for which (Fk)’ = -$(2k+ l)Vy). 
It should be recalled that within the space of states with even values of J, the expansion 
is not unique. An even tensor interaction satisfying eq. (A. 11) is also equal to an odd 
tensor interaction. Finally we should add to the odd tensor interaction Vyd+ VT 
the operator (A. 10) which adds to every V;dd + Vyn the term aA which completes 
the general form of a Hamiltonian H which satisfies eqs. (17) and (18). 
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