Core excitations on semi-magic Ni and Sn nuclei

Kamila Sieja¹

Institut Pluridisciplinaire Hubert Curien

Vietri sul Mare 24.05.10

¹Strasbourg-Madrid SM collaboration

K. Sieja (IPHC)

SM & Exotic Nuclei

Vietri sul Mare 1 / 11

Core excitations in tin isotopes: reminder

A. Banu et al., PRC72, 06135(R) 2005.

- no center of mass problem
 full space diagonalization possible
- Inot applicable for light tins

< A >

Nickels vs Tins

- E

K. Sieja (IPHC)

Core excitations on semi-magic nickels

Correlations in light nickel isotopes are well described within the pf-shell

■ We should be good with gds shell for neutrons and protons for a proper description of the vicinity of ¹⁰⁰Sn

Collectivity in heavy nickels

 $I \gg \nu d_{5/2}$ orbital necessary to account for B(E2) of heavier nickels

INTERPOLATION STREET, THE STREET, THE STREET, STREET,

Doubly magic? Ni56, Ni68, Ni78

Nickel chain

- ⁵⁶Ni: well doubly-magic; Z,N=28 gap 6.5MeV
- ⁶⁸Ni: mixture of magic and superfluid (O. Sorlin et al, 2002)
- reduction of the proton gap between ⁶⁸Ni and ⁷⁸Ni (J.M. Daugas, PRC2010, KS and FN, to be published)

Stability of shell closures in ⁷⁸Ni

SM & Exotic Nuclei

N=50 7 EXP SM 6 5 ⁸²Ge E_{exc} (MeV) 5⁺ ♦6⁺ 4 J^{π} $d_{5/2}$ f_{7/2} f_{5/2} р **g**_{9/2} 3 0^{+} 7.65 0.37 3.97 9.48 0.48 2^{+} 7.80 0.30 3.90 9.46 0.57 5^{+} 7.64 0.49 3.87 8.44 1.57 2 6^{+} 7.62 0.48 3.90 8.51 1.50 2+ 1 0 28 30 32 34 36 38 40 Ζ

SM: πpf , $\nu fpgd$, LNPS

< A

- Core excitations crucial for the B(E2)'s in nickels.
- Weaknening of the proton gap between ⁶⁸Ni and ⁷⁸Ni from 5.7MeV to 5.0MeV.
- ⁷⁸Ni is supposed to be a doubly magic nucleus with proton gap 5.0MeV and neutron one of 4.6MeV.
- Light tin isotopes (100-110) should be well described in the πν gds model space
- Role of the neutron core excitations in light Sn isotopes -in progress

Thanks to:

- E. Caurier, F. Nowacki, A. Poves
- S. Lenzi