Mini-Workshop on Future In-Beam Conversion Electron Spectroscopy
ISKP Bonn, 23./24. January 2003

Conversion Electron Spectroscopy
in the Second Minimum of Actinides

P.G. Thirolf, LMU München

- Introduction: double-humped fission barrier, fission isomers
- Experiments in the superdeformed 2. minimum: 240fPu
 - γ-spectroscopy
 - conversion electron spectroscopy
- Predictions from phenomenological systematics
- Summary and Outlook
2. minimum and fission isomers

- double-humped fission barrier:

\[
\text{(macroscopic) droplet model} + \text{(microscopic) shell corrections (Strutinsky, 1967)}
\]

- \(^{240}\text{Pu} \):

\[
\text{1. minimum} \quad \text{2. minimum}
\]

- magic neutron number \(N=146 \), fission isomer: \(t_{1/2} = 3.8 \text{ ns} \)

- pioneer experiment by Specht et al. (1972):
 conversion electron spectroscopy after \(^{238}\text{U} (\alpha 2n) ^{240}\text{Pu} \)
 first identification of fission isomeric ground state rotational band
\(\gamma \) spectroscopy in \(^{240f}\text{Pu} \)

- 6 Ge-CLUSTER of German EUROBALL Collaboration: 42 detectors
- \(^{238}\text{U}(\alpha, 2n)\ ^{240f}\text{Pu} \) \(t_{1/2} = 3.8 \text{ ns} \), 440 hrs. beamtime
- delayed coincidence with fission fragments

- single intensive \(\gamma \)-line (786.1 keV, 36.6 \%) + weaker lines
- regular rotational band structure: starting point for level scheme

Mini Orange setup for conversion electron spectroscopy

Principle:

- Mini-Oranges: 3x annular Si detector (delayed fission)
- 238 U Target
- α
- wedge-shaped permanent magnets around central Pb absorber
- toroidal magnetic field
- 2 configurations:
 - $300 \leq E_e (\text{keV}) \leq 600$
 - $600 \leq E_e (\text{keV}) \leq 800$
- Si(Li)-detectors: $\Delta E \sim 3.1 \text{ keV}$
- total efficiency: 5.4 % (625 keV)
Experimental Setup for Conversion Electron Spectroscopy
Conversion electrons from 240fPu

- from 2 series of experiments (ca. 570 hrs. beamtime):
 transmission optimized for 300-600 keV, 600-800 keV
- reaction: $^{238}\text{U}(\alpha,2n)^{240f}\text{Pu}$ $E_\alpha = 25 \text{ MeV}$
- electrons in delayed coincidence with fission fragments

![Graph showing electron energy distribution and transmission efficiency]
β bands in $^{236f,238(f)}U$ and ^{240}Pu

1. minimum:

![Graph showing β bands and α, α' reaction](image)

2. minimum:

![Graph showing U(d,pn) reactions](image)

- $I_β$ - I_g - degeneracy removed
Combined analysis: γ’s + conversion electrons

- all strong electron lines are E0 transitions
- conversion coefficient of 786.1 keV transition: E1
- first excited β-vibrational phonon: 769.9 keV
- connecting E0 transitions between excited rotational bands

excluded states in 2$^+_1$ manifold: ca. 98% negative parity

\[K^\pi = 0^+ \]
\[K^\pi = 1^+ \]
\[K^\pi = 2^+ \]
\[K^\pi = 0^+ \]

\[\beta \text{ band} \]
\[\alpha \text{ band} \]
\[\gamma \text{ band} \]

\[3.7 \text{ ns} \]
\[< 10 \text{ ps} \]
\[150 \text{ ps} \]

\[10 \text{ s} \]
\[4 \text{ ns} \]
\[8 \text{ ps} \]

\[10^{-8} \]
\[10^{-6} \]
\[10^{-4} \]

\[10^{-3} \]
\[10^{-2} \]
\[10^{-1} \]

\[E^0 \]
\[E^1 \]

\[\Delta E = 0.19 \]
\[\Delta E = 0.20 \]
\[\Delta E = 0.36 \]
\[\Delta E = 0.49 \]
\[\Delta E = 0.33 \]

\[46.72(9) \ E^2 (67) \]
\[73.12(12) \ E^2 (44) \]
\[99.35(13) \ E^2 (24) \]

\[535.2(2) \ [1.2(3)] \]
\[535.5(3) \ [1.1(3)] \]
\[538.6(2) \ [U] \]
\[545.1(1) \ [0.7] \]
\[554.3(4) \ [Y] \]

\[598.0(5) \ [0.8] \]
\[570.3(4) \ [3.5(5)] \]

\[826.7(3) \ [3.2(4)] \]

\[739.6(14) \ E^0 (0.12) \]

\[561.0(2) \ [1.8(3)] \]

\[538(1) \ [1.5(2)-U] \]

\[1332 \]
\[1816 \]

\[1580.5(14) \]
\[1518.7(13) \]
\[1465.7(6) \]
\[1421.4(6) \]
\[1386.6(3) \]
\[1360.9(2) \]
\[1344.5 \]

\[986.8(13) \]
\[892.4(12) \]
\[825.0(11) \]
\[785.1(11) \]
\[769.9(10) \]

\[666.5(13) \]
\[920.7(12) \]
\[882.8(6) \]
\[851.1(4) \]
\[826.2(2) \]
\[806.2(1) \]

\[44.8 \ E^2 (~15) \]
\[31.7 \ E^2 (~15) \]
\[57.2 \ E^2 (~20) \]

\[\Delta E = 0.3 \]

\[< 10 \text{ ps} \]

\[\beta \text{ band} \]
\[\alpha \text{ band} \]
\[\gamma \text{ band} \]

\[514.8(15) \ E^0 (0.3) \]
\[520.4(14) \ E^0 (0.4) \]
\[529.0(12) \ E^0 (0.4) \]
\[543.6(12) \ E^0 (0.3) \]
\[556.5(12) \ E^0 (0.3) \]
\[581.8(12) \ E^0 (0.2) \]
\[595.1(18) \ E^0 (0.2) \]
\[628.3(13) \ E^0 (0.2) \]
\[644.9(14) \ E^0 (0.2) \]
\[508.4 \ E^0 (<0.05) \]
\[525 \ E^0 (0.5) \]

\[515 \]

\[10^{-8} \]
\[10^{-6} \]
\[10^{-4} \]
\[10^{-2} \]
\[10^{-1} \]

Level scheme of 240Pu
Moments of Inertia

(dynamical) moments of inertia:

\[E = \left(\frac{\hbar^2}{2\Theta} \right) (I (I + 1)) \]

\[\Theta/\hbar^2 = \frac{2 I - 1}{(E_I - E_{I-2})} \]

Variation of moments of inertia:
- in \(\beta \) band from rigid rotor limit (low I) to value of gs band (high I)
- odd-even staggering in b band known from \(K = 1^- \) bands in 1. minimum of actinides
- separately smooth behaviour for even/odd spins in b band
Systematics of collective excitations

- VCS: ’Valence Correlation Scheme’:
 Sum of valence nucleon pairs as ordering scheme

1. Minimum:
 - \(\gamma \) band

\[E(2^+_{\gamma}) \ [\text{keV}] \]
\[(N_p + N_n)/2 \]

2. Minimum:
 - \(\gamma \) band

\[E(2^+_{\gamma}) \ [\text{keV}] \]
\[(N_p + N_n)/2 \]

- enables prediction of phonon energies in 2. minimum
- exp. determination of new magic numbers in 2. minimum
Extension of the Grodzins Systematics

- Grodzins (/Raman): \(B(E2) \ E(2^+) = 2.6 \ Z^2 \ A^{-2/3} \)
- Actinide region: data plotted as function of quadrupole moment \(Q_0 \)

\[
B(E2) = \frac{5}{16} \pi \ |e\ Q_0|^2 \quad \text{(Single shell asymptotic Nilsson model)}
\]

converted from Sobiczewski et al.
Outlook:

- Study of a fission isomer with odd neutron number
 - measurement of single particle energies

\[\gamma \text{ spectroscopy:} \]
- measurement of Nilsson orbitals in odd fission isomer \(^{237f}\text{Pu} \)
 \[\rightarrow \text{MINIBALL (new Germanium spectrometer)} \]

Conversion electrons:
- identification of \(\beta \)-vibrational bands in \(^{237f}\text{Pu} \)
 \[\rightarrow \text{Mini Oranges} \]

- Improvement of models for description of superheavy elements
 - main objective of MAFF project at new research reactor FRM–II
Expected Properties of ^{237}fPu

- **Single Particle structure:** for neutrons at deformation of second well

- **Decay properties:**

 - **Conversion electron spectroscopy**
 - (prepared at Garching)

 - **γ-ray spectroscopy**
 - (MINIBALL)

M.H. Rafailovich et al., PRL 48 (1982) 982
Population of the Second Minimum

- Excitation function:

Reaction:

\[^{235}\text{U}(\alpha,2n)^{237}\text{Pu} \]

- Isomeric cross section:

\[
\begin{array}{c|c}
^{237}\text{Pu}: & ^{240}\text{Pu}: \\
^{235}\text{U}(\alpha,2n)^{237}\text{Pu} & ^{238}\text{U}(\alpha,2n)^{240}\text{Pu} \\
E_\alpha = 24 \text{ MeV} & E_\alpha = 24 \text{ MeV} \\
\sigma_{\text{delay}} = 1-2 \mu\text{b} & \sigma_{\text{delay}} = 10 \mu\text{b} \\
\frac{\sigma_{\text{delay}}}{\sigma_{\text{prompt}}} = 1.2 \times 10^{-5} & \frac{\sigma_{\text{delay}}}{\sigma_{\text{prompt}}} = (6-8) \times 10^{-5} \\
\frac{\sigma_{\text{short}}}{\sigma_{\text{long}}} = 1.1 & \\
\end{array}
\]

S. de Barros et al., Z. Phys. A 323 (1986) 101

Summary/Outlook

- **Advantage of fission isomers:**
 - low angular momenta, few K mixing
 - clear separation between vibrational and rotational excitations

- **Conversion electron spectroscopy indispensable tool:**
 - complementary to γ-ray spectroscopy: removal of ambiguities

- **Superdeformed 2. minimum:**
 - identification of superdeformed collective bands
 - determination of β phonon energy
 - detailed level scheme
 - predictive power for phonon energies in 2. minimum
 - exp. determination of new magic numbers in 2. minimum
 - extension of the Grodzins systematics

- **Outlook:**
 - identification of Nilsson single particle states
 - candidate: ^{237f}Pu with conversion electron, γ spectroscopy
 - (in beam) identification of the fission isomer in ^{239}U
Collaboration:

LMU München

D. Gassmann
D. Habs
M.J. Chromik
P. Reiter
H.J. Maier
PGT

Univ. Bonn

E. Mergel
H. Hübel
J. Domscheit
A. Görgen
S. Neumann
A. Neusser
G. Schönwasser

Inst. Nucl. Research, Debrecen/Ungarn

A. Krasznahorkay

CEA/Saclay

K. Hauschild

CSNSM Orsay

A. Lopez-Martens

MPI Heidelberg

D. Pansegrau
H. Bauer
T. Härtlein
F. Köck
H. Scheit
D. Schwalm