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Significance of collective excitations

Review of collective excitations

In the previous lecture we discussed two types of collective excitations

1 collective vibrations,

2 collective rotation

We discussed collective vibration of various multipolarities

We also discussed the impact of symmetries of the axially symmetric
quadrupole rotor on the rotational spectra

1 Excitation energy of the rotational states come from the rotation about
the axis perpendicular of the symmetry axis.

2 The symmetry of the rotor with respect to the rotation about 180◦
around the axis perpendicular to the symmetry axis resulted in even
spin only in the excitation spectrum.
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Significance of collective excitations

Why are the collective excitations significant?

The answer to the question of significance of the collective excitation
is quite simple:

1 collective excitation can be conclusively identified as such from the
pattern of excited states

2 collective excitations provide direct insight into the structure of nuclei,
nuclear potential, nuclear binding, and ultimately, the nuclear force.

Collective excitations, therefore, provide a probe which allows us to
see what we can not see directly.

There are not many other probes of similar utility, therefore a
significant effort of nuclear science community is concentrated on
studies of nuclear collective excitations.

Today we are going to analyze a few examples of collective excitation
and information they provide.
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Significance of collective excitations

Collective excitations of di-atomic molecules

A good analogy is provided by collective excitation of di-atomic
molecules which yield information on bond length and strength from
rotational and vibrational spectra.
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The monopole vibrations

Nuclear equation of state and the breathing mode

You are aware of the role the ideal gas law plays in science.

The ideal gas law was first formulated empirically based on the laws
of gas transformations derived from experiments (and further derived
from ideal gas model supporting the atomic theory of matter).

One of these laws of transformation was the Boyle-Mariotte law
giving the relation between the pressure (force) and volume at a
constant temperature and mass.

A similar equation of state, or relation between pressure and volume,
for nuclear matter is clearly of interest to nuclear scientists.

The breathing (monopole) nuclear vibration mode is equivalent to the
Boyle’s transformation of the ideal gas.

Thus the information on the berating mode provides insight into
nuclear equation of state and gives information on nuclear
incompresibility.
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The dipole vibrations

The Giant Dipole Resonance and the symmetry energy

The Giant Dipole Resonance (GDR) is a vibration of proton and
neutron mass/density distributions around the common centre of
mass.

The restoring for for the GDR has the same origin as the symmetry
energy in the Liquid Drop model.

The information on frequency of the GDR provides insight into the
symmetry/asymmetry properties on the nuclear equation of state.
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The dipole vibrations

The Giant Dipole Resonance

Giant Dipole Resonance was discovered as a prominent increase in the
probability of the photo-dissociation of a neutron, the (γ, n) reaction
at nuclear excitation energy ∼15 MeV.

The name resonance comes from the Lorentz-peak structure of the
excitation probability function which is centred on the resonance
frequency of the proton-neutron vibrational mode.

The name giant comes from the large amplitude.
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The dipole vibrations

The split Giant Dipole Resonance and the deformation

Studies of the GDR indicated double-peak structure in nuclei far from
the magic gap.

This observation has been interpreted as an evidence of two different
frequencies of the proton-neutron oscillation in deformed nuclei.

Thus, the GDR provides also information on nuclear deformation.
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The dipole vibrations

The scissors mode

The scissors mode is an oscillation of the axes of deformed proton and
neutron distribution with respect to the common axis.

It is distinct from GDR in deformed nuclei where axes stay parallel.

Scissors mode probes asymmetry of nuclear matter an deformation of
nuclei but differently than the GDR.
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The dipole vibrations

Phonon excitations

We discussed the phonon model and phonon excitations of different
multipolarities (rank).

The phonons are identified from the data by a comparison between
predicted and observed pattern of excitations.

In particular, the first excited state has the spin and parity of the
phonon, the next group of excited states has twice the energy of the
first one, positive parity, and spins and degeneracy defined by the
two-phonon coupling.

Excitation energy of the phonon provides information on frequency of
the vibrations at the given multipolarity, which in turn provides
information on nuclear potential, nuclear states near the Fermi level,
and coupling between valence nucleons outside closed shells.
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Rotation and moments of inertia

Quantum quadrupole axial rotor

Excitation energies of a quantum quadrupole axial rotor are

EI =
~2

2J
I (I + 1) (1)

I is the angular momentum (spin) of the state

J is the moment of inertia.

Symmetries allow only even values of I and positive parity

Consequently the energy levels are

Spin/parity Iπ 0+ 2+ 4+ 6+ 8+

Energy E 0 6 ~2

2J 20 ~2

2J 42 ~2

2J 72 ~2

2J

EIπ/E2+ 0 1 3.33 7 12
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Rotation and moments of inertia

Quantum quadrupole axial rotor: 178Hf

Let us look into the lowest energy excitations in 178Hf

Spin/parity Iπ 0+ 2+ 4+ 6+ 8+

Energy E [keV] 0 93.2 306.6 632.2 1058.6

EIπ/E2+ 0.00 1.00 3.29 6.78 11.36

If we compare with the prediction of the rotor model we see a pretty
good agreement (and small deviations to be discussed later).

Spin/parity Iπ 0+ 2+ 4+ 6+ 8+

Energy E 0 6 ~2

2J 20 ~2

2J 42 ~2

2J 72 ~2

2J

EIπ/E2+ 0.00 1.00 3.33 7.00 12.00
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Rotation and moments of inertia

Moment of inertia

The comparison of the experimental excitation energies of 178Hf and
axially symmetric quadrupole rotor yields reasonably good agreement.

From this comparison we can extract the moment of inertia

E2+ =
~2

2J
2 ∗ 3 = 3

~2

J
=⇒ J = 3

~2

E2+
(2)

For 178Hf we get J = 32.2 ~2/MeV, and the same can be done for a
large number of know rotational nuclei.

If we know quadrupole moments and radii of these rotational nuclei
we could calculate moments of inertia for the corresponding deformed
shapes and compare to these extracted from rotational energies.
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Rotation and moments of inertia

Rigid body moment of inertia

The question becomes how to calculate the moment of inertia.

The first answer which may come to mind is to assume rigid shape of
the nuclear distribution.

This, after all, is done for extracting the bond length for diatomic
molecules. The moment of inertia for two equal masses m separated
by L rotating about the centre of mass is

J =
1

2
mL2 (3)
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Rotation and moments of inertia

Moment of inertia

Nuclear moment of inertia depends on the mass distribution.

For a quadrupole rotor we can use the Bohr-Wheeler parametrization
for the axially symmetric shape with parameter β fully defining the
deformation of the shape.

The calculations involve the volume integral over the density
distribution but yields a relatively simply result

JR =

∫
V
r2ρ(r)r2 sin θdrdθdφ =

2

5
MR2

0 (1 + 0.31β) (4)

You may recall the moment of inertia for a rigid sphere with radius R0

JS =
2

5
MR2

0 (5)
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Rotation and moments of inertia

Rigid body moment of inertia for 178Hf

Let us estimate J for 178Hf. First let us calculate

JS =
2

5
MR2

0 =
2

5
Au
(
r0A

1
3

)2
=

2

5

uc2r2
0

(~c)2
A

5
3 [~2/MeV] =

= 0.0138A
5
3 [~2/MeV] (6)

For 178Hf this yields

Js = 0.0138(178)
5
3 = 77.7 [~2/MeV] (7)

The deformation increases the moment of inertia. For a reasonable
guess of β ∼ 0.3

JR = 77.7(1 + 0.31× 0.3) ∼ 85 [~2/MeV] (8)
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Rotation and moments of inertia

Rigid body moment of inertia for 178Hf

The rigid body moment of inertia for 178Hf is

JR = 85 [~2/MeV] (9)

The moment of inertia measured from the rotational spectrum of

J = 32 [~2/MeV] (10)

We observe a factor of ∼ 3 discrepancy.

Which should prompt us the legitimate conclusion that nuclei do not
rotate as rigid bodies.
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Rotation and moments of inertia

Irrotational flow moment of inertia

We have observed that nuclei do not rotate like rigid bodies.

Which prompts a question, how do they rotate?

If rigid body does not work, we could take another extreme and
assume that nuclei rotate like a deformed drop of liquid.

After all, that may be in correspondence to the Liquid Drop model.

Before we pursue this idea, we should investigate what is a difference
between rigid body and irrotational liquid rotation.

One way to do it is to compare rotation of a fresh and hard boiled
egg.

Another way is to look into the flow lines.
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Rotation and moments of inertia

Irrotational flow vs. rigid body

The figure below shows a comparison between flow lines for
irrotational flow and a rigid body in the laboratory and intrinsic
reference frames.

Quantum mechanics of collective nuclear Quantum mechanics of collective nuclear 
rotation.rotation.

Parameterization of nuclear radius:

        r (t)=r0 [ 1+Σλµ a(t) Y λµ ( θ , ϕ) ] .

Rotation resembles that of irrotational liquid but is 
different than that of  a rigid body. In particular 
moments of inertia for both cases differ 
significantly.

laboratory intrinsic

irrotational
liquid

rigid
body
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Rotation and moments of inertia

Irrotational flow moment of inertia

Calculations of the irrotational flow moment of inertia involve fluid
dynamics and yield

JI =
9

8π
MR2

0β
2 =

45

16π
JSβ

2 (11)

The irrotational flow moment of inertia is smaller than the rigid body
moment of inertia (that may be good since the rigid body moment of
inertia for 178Hf was ∼ three times too large.)

The irrotational flow moment of inertia for 178Hf is

JI =
45

16π
JSβ

2 =
45

16π
77.7(0.3)2 = 6.3[~2/MeV] (12)

This is ∼ 5 times too small as compared to the experimental value of
32 [~2/MeV].

Which should prompt us to a legitimate conclusion that nuclei do not
rotate like irrotational flow either.
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Rotation and moments of inertia

How do nuclei rotate?

We know how nuclei do not rotate, and we are back to the same
question on the origin of nuclear rotation.

The experimental moment of inertia is smaller than the rigid body
which may indicate that there is a part of nucleus which rotates and
part which does not.

This lead towards a macroscopic picture of a distortion wave flowing
on the surface of a non-rotating spherical core.

In the microscopic picture we should note the impact of pairing
interactions which bind nucleons into pairs of zero angular momenta,
which according to quantum mechanics, can not contribute to
rotational excitations.

The relation between this to pictures is still an active area of study.
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Rotation and moments of inertia

How do nuclei rotate?

In the microscopic picture the angular momentum and excitation
energy of rotational states has to originate from angular momenta
and excitation energies of nucleons forming the nucleus.

We can distinguish between nucleons well below the Fermi level which
are bound to pairs of zero spin and require significant energies to be
excited and nucleons near the Fermi level which can scatter to free
states near the Fermi level.

Nuclear rotation results from gradual and smooth alignment of tiny
angular momentum contributions of many nucleons near the Fermi
level. These contributions form the total angular momentum, while
energy required for the alignment is reflected in the excitation energy
of the resulting state.

Paired nucleons well below the Fermi level form the non-rotating core
of spin 0.
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Pair alignment

Pair alignment

The qualitative picture presented above is consistent with a
phenomenon of pair alignment observed for some nuclei.

Experimentally, the pair alignment is observed as a sudden increase of
the moment of inertia which happens in a narrow range of spin
around I ∼10-12 ~ in a rotational sequence.

The sequence remains rotational below and above the alignment.

The microscopic mechanism for the alignment is shown by this applet.

Pair alignment is a sudden effect impacting a single pair of nucleons
in contrast to the nuclear rotation resulting from gradual alignment of
a large number of pairs.
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Rotation of odd-mass nuclei

Rotating Nilsson potential

For nuclei with odd number of either protons or neutrons two
contributions to the total angular momentum I can be distinguished

1 the collective contribution from the rotation of even-even core

2 the single-particle contribution from the valence single nucleon.

For a quadrupole axially symmetric rotor the Nilsson model can be
used to identify the single-particle contribution.

In so called “strong coupling limit” this contribution is equal to the
projection of the single-particle angular momentum on the symmetry
axis which is given by the Nilsson quantum number Ω.

The rotational contribution R to the total angular momentum can be
extracted from the vector coupling model as

R2 = I (I + 1)− Ω2 (13)
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Rotation of odd-mass nuclei

Rotating Nilsson potential

Each Nilsson state has a rotational band built upon it.

The symmetries of the axially symmetric rotor with an odd nucleon
coupled are different than these for the axially symmetric rotor alone.
Both, even and odd spins are allowed within each band.

The smallest value of I for the band is Ω

The lowest energy state (with spin Ω) is called the band head.

The rotational energies are give by

E = E0 +
~2

2J
R2 = E0 +

~2

2Jω

(
I (I + 1)− Ω2

)
(14)

E0 is the energy of the bandhead

Each band can have different moment of inertia JΩ.
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Rotation of odd-mass nuclei

Rotating Nilsson potential: 179Hf

Partial level scheme of 179Hf with rotational bands built on four
different Nilsson states.
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Symmetries and rotations

Symmetries and rotations

We have discussed the impact of symmetries on the excitation
spectrum of axially symmetric quadrupole rotor.

The consequence of the axial symmetry was the rotation about the
axis perpendicular to the symmetry axis, the symmetry with respect to
rotation about this axis by 180◦ restricted spins to even values only.

It turns out that impact of the symmetries on the rotational spectra is
general and significant.

Every symmetry in the intrinsic frame has an impact on the pattern of
excited levels observed in the laboratory reference frame.

Thus collective rotation provides a significant tool to study underlying
symmetries in nuclei.
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Symmetries and rotations

An axially symmetric octupole rototSpace inversion invariance:Space inversion invariance:
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