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The electron spectrum

Fermi theory of β decay

Motivated by the neutrino hypothesis Enrico Fermi proposes a
quantum theory of β decay which is successful in describing
experimental observation.

Fermi’s theory has a number of simplifying assumptions but is refined
over the years and becomes the cornerstone of the theory of weak
interactions in the standard model of elementary particles.

In the most basic theory the assumptions are:

1 three body decay,

2 zero mass for the neutrino,

3 no recoil of the daughter,

4 relativistic and spin less neutrinos and electrons,

5 no electromagnetic interactions between the electron and the daughter,

6 the wavelength for the neutrino and electron motion are significantly
larger than the size of the parent/daughter nuclei.
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The electron spectrum

Fermi’s golden rule

Fermi applied perturbation theory to derive quantum mechanical
expression for a transition rate between an initial state represented by
the wave function Ψi and the final state at the energy Ef represented
by the wave function Ψf

λ =
1

τ
=

2π

~
ρ(Ef )

∣∣∣∣∫ Ψ∗
fHpΨidV

∣∣∣∣2 (1)

Above Hp represents a small perturbation of the system which causes
the decay. For the β decay Hp represents weak interactions.

The parameter ρ(Ef ) represents the density of final states at energy
Ef . If there are no states the density is zero and the transition does
not proceed. If the density of the final states is large the transition
rate is large.
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The electron spectrum

Relativistic neutrinos

The relativistic energy-momentum relationship reads

E =
√

p2c2 + m2c4 (2)

The rest energy is the energy at p = 0

E0 = mc2 (3)

A particle is called relativistic when the energy is much larger than
the rest energy

E >> E0 =⇒ E >> mc2 (4)

For a relativistic particle
E = pc (5)

Since we assume zero mass for neutrinos, neutrinos are always
relativistic and move at the speed of light.
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The electron spectrum

Relativistic electrons

The electron mass is mc2 = 0.511 MeV.

It is not uncommon to have the β decay Q values on the order of a
few MeV or more.

If we assume the energy of electrons of 5.11 MeV ten times larger
than the electron rest energy the speed is

(10mc2)2 = 100mc2 = γ2m2c4 + m2c4

γ2 =
1

1− β2
= 99 =⇒ β =

v

c

√
1− 1

γ2
= 0.995

Since electrons move with nearly the speed of light we will use

E = pc (6)

for both electrons and neutrinos.
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The electron spectrum

The wave functions

The calculations of the transition rate requires calculation of the
integral ∣∣∣∣∫ Ψ∗

fHpΨidV

∣∣∣∣2 (7)

The initial state involves the wave function of the parent Ψi = Ψp

The final state involves the product of the wave functions of the
daughter, the electron and the neutrino Ψf = ΨdΦeΦν

The integration is over the volume of the parent/daughter nuclei
dV = dVN since the wave functions for the parent and daughter
converge to 0 very fast outside the nuclear volume VN .

Thus, we need to know neutrino and electron wave functions within
the nuclear volume but not outside.
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The electron spectrum

Neutrino and electron wave functions

For the outgoing neutrino and electron we will assume plane waves

Φe = A expi ~ke~r ~pe = ~~ke
Φν = B expi ~kν~r ~pν = ~ ~kν (8)

These wave functions can not be normalized, the normalization
constants A and B are infinite if the particles are allowed to
propagate into the infinite distances.

To avoid this problem we assume that the system is enclosed withing
the volume V which can be large but finite.

With this assumption the neutrino and electron wave functions are

Φe =
1√
V

expi ~ke~r ~pe = ~~ke ke =
2π

λe

Φν =
1√
V

expi ~kν~r ~pν = ~ ~kν kν =
2π

λν
(9)
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The electron spectrum

Neutrino and electron wave lengths

The wavelengths of the electron is

λe =
h

p
=

2π~c
pc

=
2π~c
E

=
2 ∗ 3.14 ∗ 197.3 [MeV fm]

E [MeV]

=
1240 [MeV fm]

E [MeV]
(10)

For the decay with the energy ten times larger than the mass of the
electron,

λe =
1240

5.11
= 243 [fm] (11)

which is significantly larger than the nuclear radius of a few fm.

The same calculations can be performed for the neutrino.

The outcome is the same, the wavelength of the leptons is much
smaller than the nuclear radius.
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The electron spectrum

Neutrino and electron wave functions

The neutrino and electron wave functions are

Φe =
1√
V

expi ~ke~r ~pe = ~~ke ke =
2π

λe

Φν =
1√
V

expi ~kν~r ~pν = ~ ~kν kν =
2π

λν
(12)

But

λe >> r =⇒ ~ke~r ≈ 0 =⇒ expi ~ke~r ≈ 1

λν >> r =⇒ ~kν~r ≈ 0 =⇒ expi ~kν~r ≈ 1 (13)

Thus the wave functions of interest within the nuclear volume are

Φe ≈
1√
V

Φν ≈
1√
V

(14)
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The electron spectrum

The nuclear matrix element

Taking into account the above approximation the integral in the
Fermi’s golden rule becomes∣∣∣∣∫ Ψ∗

fHpΨidV

∣∣∣∣2 =

∣∣∣∣∫ Ψ∗
pHpΨddVN

∣∣∣∣2 1

V 2
(15)

VN is the nuclear volume, the V is the large box enclosing the
decaying system.

The integral over the nuclear volume of the week interactions Hp

between the parent Ψp and the daughter Ψd state is equal to the
interaction strenght g times the nuclear matrix element | Mif |2

g2 | Mif |2=

∣∣∣∣∫ Ψ∗
pHpΨddVN

∣∣∣∣2 (16)
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The electron spectrum

The Fermi golden rule for β decay

With the above approximation included the Fermi golden rule predicts
for the β decay rate

λ =
1

τ
=

2π

~
ρ(Ef )g2 | Mif |2

1

V 2
(17)

What we are lacking to complete the calculation is the density of
states ρ(Ef ).

The density of states is equal to the number of electron states per
unit energy (dn/dQ)etimes the number of neutrino states per unit
energy (dn/dQ)ν at the fixed energy of the decay Q

We are going to calculate the number of electron and neutrino state
in a way similar to that we used for the Fermi model of nucleus.

Remember that the decaying system is enclosed by the volume V ,
which means it is embedded withing the infinitely deep three
dimensional potential well.
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The electron spectrum

Infinitely deep potential well in three dimensions

Let us denote the dimensions of the well along the x , y and z
coordinates as Lx , Ly and Lz .

The wave functions are

Ψnx ,ny ,nz (x , y , z) = Ψnx (x)Ψny (y)Ψnz (z) = (18)

= sin(kxx) sin(kyy) sin(kzz) = sin(nxπ
x

Lx
) sin(nyπ

y

Ly
) sin(nzπ

z

Lz
)

Note that nx > 0, ny > 0 and nz > 0 otherwise Ψnx ,ny ,nz = 0.

The energies are

Enx ,ny ,nz =
π2~2

2m

n2x
L2x

+
π2~2

2m

n2y
L2y

+
π2~2

2m

n2z
L2z

=

=
π2~2

2m

(
n2x
L2x

+
n2y
L2y

+
n2z
L2z

)
(19)
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The electron spectrum

Infinitely deep potential well in three dimensions

Recall that the components of the momentum of the particle are

px = ~kx = ~π
nx
Lx
, py = ~ky = ~π

ny
Ly
, pz = ~kz = ~π

nz
Lz

(20)

The energy is then

Enx ,ny ,nz =
p2x
2m

+
p2y
2m

+
p2z
2m

=
π2~2

2m

(
n2x
L2x

+
n2y
L2y

+
n2z
L2z

)
(21)

And for simplicity we assume (unrealistically) Lx = Ly = Lz = L thus

Enx ,ny ,nz =
π2~2

2mL2
(
n2x + n2y + n2z

)
(22)
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The electron spectrum

The number of electron states

Let us denote the electron energy equal by Ee .

The corresponding electron momentum is

Ee =
p2e
2m

=⇒ pe =
√

2mEe (23)

Let us count the number of states for the electron momentum pe . For
these states

p2x + p2y + p2z < p2e =⇒ π2~2

L2
(
n2x + n2y + n2z

)
< p2e (24)

To count the number of states we will use a trick. To use the trick we
need to note that Eq. 24 implies

n2x + n2y + n2z <
p2eL

2

π2~2
(25)
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The electron spectrum

The (nx , ny , nz) space
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The electron spectrum

The number of electron states

We can calculate the number of electron state using a similar trick to
the one we used to calculate the number of states in the Fermi model

Let us consider the space defined by the quantum numbers
(nx , ny , nz).

Electrons with momentum between pe and pe + dpe define a spherical
shell with radius R = peL/π~ and thickness dR = dpeL/π~ in this
space with volume

V = 4πR2dR = 4π

(
L

π~

)3

p2dp =
4V

π2~3
p2dp (26)
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The electron spectrum

The number of lepton states

To get the number of electron states we need to remember that the
condition for nx > 0, ny > 0 and nz > 0 requires that we take 1/8 of
the volume V. We neglect the electron spin.

The density of electron states is

dne(Ee) =
1

8
V =

1

8

4V

π2~3
p2edpe =

V

2π2~3
p2edpe =

4πVp2edpe
h

(27)

The same is true for the neutrino and the corresponding number of
states

dnν(Eν) =
1

8
V =

V

2π2~3
p2νdpν =

4πVp2νdpν
h

(28)
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The electron spectrum

The conservation of energy

To compute the density of states of the system we need to multiply
the density of electron and neutrino states imposing the conservation
of energy in the decay.

The conservation of energy defines the energy of the neutrino for a
fixed energy of the electron.

Denoting the kinetic energies of the electron and the neutrino by Te

and Tν and also the decay Q-value by Q the conditions for the
neutrino momentum at a fixed electron energy Te

pν =
Tν
c

=
Q − Te

c

dpν =
dQ

c
(29)
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The electron spectrum

The number of states for the system

The number of states for the system is

dn = dnednν =
4πVp2edpe

h

4πVp2νdpν
h

=
16π2V 2

h6
p2edpep

2
νdpν (30)

The conservation of energy eliminates the dependence on the neutrino
momentum

dn =
16π2V 2

h6
p2edpe

(
Q − Te

c

)2 dQ

c

dn =
16π2V 2

h6c3
(Q − Te)2p2edpedQe (31)

The density of states per decay energy is

ρ(Ee) =
dn

dQ
=

16π2V 2

h6c3
(Q − Te)2p2edpe (32)
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The transition rate per unit momentum

The decay probability at fixed momentum

From the Fermi’s golden rule the probability for the decay at a
between electron momentum pe and pe + dpe is

λ(pe)dpe =
2π

~
ρ(Ee)g2 | Mif |2

1

V 2

=
2π

~
g2 | Mif |2

1

V 2

16π2V 2

h6c3
(Q − Te)2p2edpe =

=
1

2π3~7c3
g2 | Mif |2 (Q − Te)2p2edpe (33)

The above function can be further fully expressed either as a function
of the electron energy Te or electron momentum pe .

It is called the statistical phase space factor for the three body decay.

The continuous electron spectrum from β decay would have the
shape of the statistical phase space factor if all the assumption of the
model are valid.
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The transition rate per unit momentum

The statistical phase space factor for the three body decay
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The transition rate per unit momentum

The Coulomb interactions

Measured electron spectra show deviation from the statistical phase
factor derived by Fermi based on the set of assumptions discussed at
the beginning of the lecture.

This indicates that the assumptions are too simplistic.

In particular, treating the electron as a plane wave and neglecting its
interaction with the daughter is too big of an approximation.

Taking into account the electron charge requires using waves
distorted by the Coulomb interactions. This has been done by Fermi.

The distortion is included in the Fermi function F (Zd , pe) which
depends on the charge of the daughter and the momentum of the
electron.
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The transition rate per unit momentum

The Coulomb interactions

The probability for the decay at a between electron momentum pe
and pe + dpe taking into account distorted waves and Coulomb
interactions is

λ(pe)dpe =
1

2π3~7c3
g2 | Mif |2 F (Zd , pe)(Q − Te)2p2edpe (34)

The electron/positron spectra as a function of momentum for
undistorted waves are symmetric with respect to

p0 =
1

2

√
2meQ (35)

The electron spectra as a function of momentum for distorted waves
are shifted to lower momenta by Coulomb attraction.

The positron spectra as a function of momentum for distorted waves
are shifted to higher momenta by Coulomb repulsion.
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The transition rate per unit momentum

Distorted electron/positron spectra
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The endpoint spectrum

The endpoint spectrum

The highest energy part of the electron spectra is significant for two
reasons.

1 The measurement of the end point of the electron spectrum defines the
Q value for the decay. Thus the mass differences can be established
from β decay measurements.

2 Corrections of the electron spectrum due to the neutrino mass modify
the electron spectrum near the end point. Thus endpoint
measurements can in principle provide information on the mass of
electron neutrino.

The sensitivity of the measurement of the endpoint is increased if the
data are plotted on the Kurie plot.
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The endpoint spectrum

The Kurie plot

The Kurie plot is the plot of

y =

√
λ(pe)

p2eF (Zd , pe)
(36)

as a function of
x = (Q − Te) | Mif |2 (37)

The significance of this coordinates is in the fact that the electron
spectrum near the endpoint is linear if y is plotted as a function of x .
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The endpoint spectrum

The Kurie plot
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