Angular momentum and magnetic moment

Introduction to Nuclear Science

Simon Fraser University
Spring 2011

NUCS 342 - January 12, 2011

Outline

(1) Scalars and vectors

Outline

(1) Scalars and vectors
(2) Conservation laws

Outline

(1) Scalars and vectors
(2) Conservation laws
(3) Scalar and vector product

Outline

(1) Scalars and vectors
(2) Conservation laws
(3) Scalar and vector product

4 Rotational motion

Outline

(1) Scalars and vectors
(2) Conservation laws
(3) Scalar and vector product

4 Rotational motion
(5) Magnetic moment

Outline

(1) Scalars and vectors
(2) Conservation laws
(3) Scalar and vector product

4 Rotational motion
(5) Magnetic moment
(6) Angular momentum in quantum mechanics

Outline

(1) Scalars and vectors
(2) Conservation laws
(3) Scalar and vector product

4 Rotational motion
(5) Magnetic moment
(6) Angular momentum in quantum mechanics
(7) Spin

Scalars

- Scalars are used to describe objects which are fully characterized by their magnitude (a number and a unit).
- Examples are mass, charge, energy, temperature, number of particles.
- Scalars do not depend on a coordinate system, for example the temperature around you does not depend if you look south, north, east or west.
- Moreover, the temperature is the same if you are at rest or moving.
- Mathematically, this is expressed by saying that scalars are invariant under Galilean (non-relativistic) or Lorentz (relativistic) transformation.
- Scalars are also invariant under rotation, indeed the temperature stays the same if you start to spin around.

Vectors

- Vectors are used to describe objects which are fully characterized by their magnitude (a number and a unit) and direction expressed in 3 dimensional space using three coordinates $\vec{r}=(x, y, z)$.
- Examples are velocity, acceleration, force, momentum, angular momentum, torque.
- Vector components do depend on the choice of a coordinate system.
- Vectors are non invariant under Galilean and Lorentz transformation, and also non-invariant under rotation.
- The magnitude of a vector, however, is a scalar and is invariant under Galilean transformation, as well as rotation.

Conservation of momentum at low speed

- At $v \ll c$ momentum is defined as:

$$
\vec{p}=m \vec{v}
$$

- The second Newton's law can be expressed as

$$
\begin{equation*}
\vec{F}=\frac{d \vec{p}}{d t} \tag{1}
\end{equation*}
$$

- In the absence of external force $\vec{F}=0$

$$
\begin{equation*}
\frac{d \vec{p}}{d t}=0 \quad \Longrightarrow \quad \vec{p}=\text { const. } \tag{2}
\end{equation*}
$$

and momentum is conserved.

Conservation of energy at low speed

- At $v \ll c$ kinetic energy is defined as:

$$
\begin{equation*}
T=\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m} \tag{3}
\end{equation*}
$$

- In the absence of external force momentum is conserved $\vec{p}=$ const. which implies $p^{2}=$ const. and $T=$ const., which means that the kinetic energy is conserved.
- Conservation of energy and momentum are fundamentals of Newtonian mechanics of linear motion, often referred to as the Classical Mechanics.

Scalar product

- The scalar (or dot) product is an operation which transforms two vectors into a scalar.
- In terms of vector components the dot product it is defined as

$$
\begin{equation*}
\vec{A} \cdot \vec{B}=A_{x} * B_{x}+A_{y} * B_{y}+A_{z} * B_{z}=\vec{B} \cdot \vec{A} \tag{4}
\end{equation*}
$$

- An example is the squared magnitude of a vector which is defined as the dot product of a vector with itself

$$
\begin{equation*}
A^{2}=\vec{A} \cdot \vec{A}=A_{x} * A_{x}+A_{y} * A_{y}+A_{z} * A_{z} \tag{5}
\end{equation*}
$$

- It can be shown that

$$
\begin{equation*}
\vec{A} \cdot \vec{B}=\sqrt{A^{2}} \sqrt{B^{2}} \cos \theta \tag{6}
\end{equation*}
$$

where θ is the angle between vectors \vec{A} and \vec{B}

Scalar product

- Dot product is a product of a vector (\vec{B} in the figure) with the projection of the other vector (\vec{A} in the figure) on its direction.

Vector product

- The vector (or cross) product is an operation which transforms two vectors into a new vector.
- This new vector is perpendicular to the plane span by two initial vectors and its directions is defined by the right-hand rule.

Vector product

- In terms of vector components the cross product it is defined as

$$
\begin{align*}
& \vec{c}=\vec{a} \times \vec{b} \Longrightarrow \\
& c_{x}=a_{y} * b_{z}-a_{z} * b_{y} \\
& c_{y}=a_{z} * b_{x}-a_{x} * b_{z} \\
& c_{z}=a_{x} * b_{y}-a_{y} * b_{x} \tag{7}
\end{align*}
$$

- It can be shown that

$$
\begin{equation*}
\sqrt{c^{2}}=\sqrt{a^{2}} \sqrt{b^{2}} \sin \theta \tag{8}
\end{equation*}
$$

where θ is the angle between vectors \vec{a} and \vec{b}

- Also

$$
\begin{equation*}
\vec{a} \times \vec{b}=-\vec{b} \times \vec{a} \tag{9}
\end{equation*}
$$

Vector product

Rotational motion: torque

- The second Newton's law for rotational motion can be expressed as

$$
\begin{equation*}
\vec{\tau}=\vec{r} \times \vec{F}=\frac{d(\vec{r} \times \vec{p})}{d t}=\frac{d \vec{l}}{d t} \tag{10}
\end{equation*}
$$

- \vec{r} is the lever arm, \vec{F} is the force, \vec{p} is momentum and \vec{l} is angular momentum.

Rotational motion: angular momentum

- The second Newton's law for rotational motion can be expressed as

$$
\begin{equation*}
\vec{\tau}=\vec{r} \times \vec{F}=\frac{d(\vec{r} \times \vec{p})}{d t}=\frac{d \vec{l}}{d t} \tag{11}
\end{equation*}
$$

- \vec{r} is the lever arm, \vec{F} is the force, \vec{p} is momentum and \vec{l} is angular momentum.

Rotational motion

- In the absence of external torque $\vec{\tau}=0$

$$
\begin{equation*}
\frac{d \vec{l}}{d t}=0 \quad \Longrightarrow \quad \vec{l}=\text { const. } \tag{12}
\end{equation*}
$$

and angular momentum is conserved, see this applet.

Magnetic moment

- Current i flowing within a loop of surface area S generates magnetic moment $\vec{\mu}$ with the magnitude $\mu=i S$.
- The direction of the magnetic moment is given by the right-hand rule.
- The interaction energy of the magnetic moment with external magnetic field \vec{B} is $E=-\vec{\mu} \cdot \vec{B}$

Gyromagnetic factor

- For a particle of mass m and charge q on a circular orbit with a radius r angular momentum \vec{l} and magnetic moment $\vec{\mu}$ are proportional.
- First note that $\vec{l}=\vec{r} \times \vec{p}=m \vec{r} \times \vec{v}$ and $\vec{\mu}$ have the same direction (perpendicular to the plane of the orbit).

Gyromagnetic factor

- Using $T=\frac{2 \pi r}{v}$ as the period of the rotational motion for a particle of mass m and charge q on a circular orbit with a radius r the magnitude of magnetic moment $\vec{\mu}$ is

$$
\begin{equation*}
\mu=S i=\pi r^{2} \frac{q}{T}=\pi r^{2} \frac{q}{\frac{2 \pi r}{v}}=\frac{q v r}{2} \tag{13}
\end{equation*}
$$

Gyromagnetic factor

- Using the fact that in circular motion the velocity is perpendicular to the radius the magnitude of angular momentum is

$$
\begin{equation*}
I=r m v \tag{14}
\end{equation*}
$$

Gyromagnetic factor

- The relation between μ and I is

$$
\begin{align*}
& \mu=\frac{q v r}{2} \\
& I=r m v \\
& \mu=\frac{q}{2 m} I=g I \quad g=\frac{q}{2 m} \text { is the gyromagnetic factor. } \tag{15}
\end{align*}
$$

Why are magnetic moments important?

- Both, angular momenta and magnetic moments can be measured for intrinsic motion of nucleons inside nuclei.
- Gyromagnetic factors are extracted from such measurements and can be compared to model estimates (for example to our simplified estimate of $g=\frac{q}{2 m}$).
- Agreement with $g=\frac{q}{2 m}$ indicates with high probability relatively simple rotational motion as assumed in our model, why the disagreement indicates that the object has more complex intrinsic structure.
- Thus magnetic moments and gyromagnetic factors provide insight into currents flowing inside nucleus, which result from the orbital motion of nucleons.

Bohr's quantization conditions

- In 1913 Niels Bohr postulates a model for hydrogen atom assuming that angular momentum of an electron is quantized and has to be equal to integer multiples of $\hbar=\frac{h}{2 \pi}$ (Planck's constant over 2π).

$$
\begin{equation*}
I=n \hbar=n \frac{h}{2 \pi} \tag{16}
\end{equation*}
$$

- A great success of the model is explanation of the line spectra known and unexplained at that time for ~ 20 years.

Hydrogen Absorption Spectrum

Quantization of angular momentum

- Further developments of quantum mechanics show that Bohr's quantization conditions are only approximate.
- Current understanding is that for a quantum mechanical vector of orbital motion \vec{L}
(1) The squared magnitude is quantized

$$
\begin{equation*}
|\vec{L}|^{2}=I(I+1) \hbar \tag{17}
\end{equation*}
$$

with / being an integer number.
(2) The projection on the z-axis of the coordinate system is quantized

$$
\begin{equation*}
L_{z}=m \hbar \tag{18}
\end{equation*}
$$

with $-I \leq m \leq I$ being an integer number representing $2 \mid+1$ degenerate substates of the same energy.

- Note that Bohr's quantization condition implies $L^{2}=n^{2} \hbar$ in disagreement with Eq. 17

Quantization of angular momentum

- Quantization of L^{2} and L_{z} implies that L_{x} and L_{y} are undefined and can not be measured, however,

$$
\begin{equation*}
L_{x}^{2}+L_{y}^{2}=L^{2}-L_{z}^{2}=\left[/(I+1)-m^{2}\right] \hbar^{2} \tag{19}
\end{equation*}
$$

is a well defined quantity.

- Semi classical picture of quantization of orbital angular momentum $I=2$ with 5 substates is shown in the figure below

Spin

- Further studies indicated that elementary particles have intrinsic angular momentum and magnetic moment.
- This was first measured for an electron by Stern and Gerlach in 1922.
- Early interpretation of this observation were based on a model of a particle spinning around its axis. This prompted the name spin.
- However, its was quickly pointed out that rotational speed at an electron's equator has to be larger than the speed of light to explain the magnitude of its spin.
- Currently, spin of composite elementary particles are explained by spins of their constituents (spin of a proton and a neutron result from coupling of quark spins and angular moments, spin of nuclei from coupling of proton and neutron spins and angular momenta).
- For elementary particles believed to be structureless the spin is one of their fundamental properties (like charge or mass).

Spin

- Spin differ from orbital angular momentum quantum number as it can be half-integer, other than behaves the same.
- Proton, neutron, electron, quarks and neutrinos are all spin $\frac{1}{2}$ particles, with two magnetic substates.

- Force carriers like gluons, photon, W and Z bosons as well as the graviton have integer spin.

Gyromagnetic factor for selected fermions

Fermion	g-factor	value	Uncertainty	unit
Electron	g_{e}	2.0023193043622	0.0000000000015	$\mu_{B}=\frac{e \hbar}{2 m_{e}}$
Neutron	g_{n}	3.82608545	0.00000090	$\mu_{N}=\frac{e \hbar}{2 m_{p}}$
Proton	g_{p}	5.585694713	0.000000046	$\mu_{B}=\frac{e \hbar}{2 m_{p}}$
Muon	g	2.0023318414	0.0000000012	$\mu_{B}=\frac{e \hbar}{2 m_{\mu}}$

Note that all g-factors should be 1 according to our estimate from Eq. 15.

Spin-statistics theorem

- The spin of a particle has crucial consequences for its properties in statistical mechanics.
- Particles with half-integer spin obey Fermi-Dirac statistics, and are known as fermions.
- They are required to occupy antisymmetric quantum states. This property forbids fermions from sharing quantum states - a restriction known as the Pauli exclusion principle.
- Particles with integer spin obey Bose-Einstein statistics and are known as bosons.
- These particles occupy "symmetric states", and can therefore share quantum states

