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Scalars and vectors

Scalars

Scalars are used to describe objects which are fully characterized by
their magnitude (a number and a unit).

Examples are mass, charge, energy, temperature, number of particles.

Scalars do not depend on a coordinate system, for example the
temperature around you does not depend if you look south, north,
east or west.

Moreover, the temperature is the same if you are at rest or moving.

Mathematically, this is expressed by saying that scalars are invariant
under Galilean (non-relativistic) or Lorentz (relativistic)
transformation.

Scalars are also invariant under rotation, indeed the temperature stays
the same if you start to spin around.
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Scalars and vectors

Vectors

Vectors are used to describe objects which are fully characterized by
their magnitude (a number and a unit) and direction expressed in 3
dimensional space using three coordinates ~r = (x , y , z).

Examples are velocity, acceleration, force, momentum, angular
momentum, torque.

Vector components do depend on the choice of a coordinate system.

Vectors are non invariant under Galilean and Lorentz transformation,
and also non-invariant under rotation.

The magnitude of a vector, however, is a scalar and is invariant under
Galilean transformation, as well as rotation.
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Conservation laws

Conservation of momentum at low speed

At v << c momentum is defined as:

~p = m~v

The second Newton’s law can be expressed as

~F = d~p
dt (1)

In the absence of external force ~F = 0

d~p

dt
= 0 =⇒ ~p = const. (2)

and momentum is conserved.
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Conservation laws

Conservation of energy at low speed

At v << c kinetic energy is defined as:

T =
1

2
mv2 =

p2

2m
(3)

In the absence of external force momentum is conserved ~p=const.
which implies p2=const. and T=const., which means that the kinetic
energy is conserved.

Conservation of energy and momentum are fundamentals of
Newtonian mechanics of linear motion, often referred to as the
Classical Mechanics.
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Scalar and vector product

Scalar product

The scalar (or dot) product is an operation which transforms two
vectors into a scalar.

In terms of vector components the dot product it is defined as

~A · ~B = Ax ∗ Bx + Ay ∗ By + Az ∗ Bz = ~B · ~A (4)

An example is the squared magnitude of a vector which is defined as
the dot product of a vector with itself

A2 = ~A · ~A = Ax ∗ Ax + Ay ∗ Ay + Az ∗ Az (5)

It can be shown that

~A · ~B =
√
A2
√
B2 cos θ (6)

where θ is the angle between vectors ~A and ~B
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Scalar and vector product

Scalar product

Dot product is a product of a vector (~B in the figure) with the
projection of the other vector (~A in the figure) on its direction.
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Scalar and vector product

Vector product

The vector (or cross) product is an operation which transforms two
vectors into a new vector.

This new vector is perpendicular to the plane span by two initial
vectors and its directions is defined by the right-hand rule.
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Scalar and vector product

Vector product

In terms of vector components the cross product it is defined as

~c = ~a× ~b =⇒
cx = ay ∗ bz − az ∗ by
cy = az ∗ bx − ax ∗ bz
cz = ax ∗ by − ay ∗ bx (7)

It can be shown that

√
c2 =

√
a2
√
b2 sin θ (8)

where θ is the angle between vectors ~a and ~b

Also
~a× ~b = −~b ×~a (9)
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Scalar and vector product

Vector product
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Rotational motion

Rotational motion: torque

The second Newton’s law for rotational motion can be expressed as

~τ = ~r × ~F =
d(~r × ~p)

dt
=

d~I

dt
(10)

~r is the lever arm, ~F is the force, ~p is momentum and ~I is angular
momentum.
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Rotational motion

Rotational motion: angular momentum

The second Newton’s law for rotational motion can be expressed as

~τ = ~r × ~F =
d(~r × ~p)

dt
=

d~I

dt
(11)

~r is the lever arm, ~F is the force, ~p is momentum and ~I is angular
momentum.
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Rotational motion

Rotational motion

In the absence of external torque ~τ = 0

d~I

dt
= 0 =⇒ ~I = const. (12)

and angular momentum is conserved, see this applet.
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Magnetic moment

Magnetic moment

Current i flowing within a loop of surface area S generates magnetic
moment ~µ with the magnitude µ = iS .

The direction of the magnetic moment is given by the right-hand rule.

The interaction energy of the magnetic moment with external
magnetic field ~B is E = −~µ · ~B
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Magnetic moment

Gyromagnetic factor

For a particle of mass m and charge q on a circular orbit with a radius
r angular momentum ~I and magnetic moment ~µ are proportional.

First note that ~I = ~r × ~p = m~r × ~v and ~µ have the same direction
(perpendicular to the plane of the orbit).
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Magnetic moment

Gyromagnetic factor

Using T = 2πr
v as the period of the rotational motion for a particle of

mass m and charge q on a circular orbit with a radius r the
magnitude of magnetic moment ~µ is

µ = Si = πr2
q

T
= πr2

q
2πr
v

=
qvr

2
(13)
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Magnetic moment

Gyromagnetic factor

Using the fact that in circular motion the velocity is perpendicular to
the radius the magnitude of angular momentum is

I = rmv (14)
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Magnetic moment

Gyromagnetic factor

The relation between µ and I is

µ =
qvr

2
I = rmv

µ =
q

2m
I = gI g =

q

2m
is the gyromagnetic factor. (15)
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Magnetic moment

Why are magnetic moments important?

Both, angular momenta and magnetic moments can be measured for
intrinsic motion of nucleons inside nuclei.

Gyromagnetic factors are extracted from such measurements and can
be compared to model estimates (for example to our simplified
estimate of g = q

2m ).

Agreement with g = q
2m indicates with high probability relatively

simple rotational motion as assumed in our model, why the
disagreement indicates that the object has more complex intrinsic
structure.

Thus magnetic moments and gyromagnetic factors provide insight
into currents flowing inside nucleus, which result from the orbital
motion of nucleons.
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Angular momentum in quantum mechanics

Bohr’s quantization conditions

In 1913 Niels Bohr postulates a model for hydrogen atom assuming
that angular momentum of an electron is quantized and has to be
equal to integer multiples of ~ = h

2π (Planck’s constant over 2π).

I = n~ = n
h

2π
(16)

A great success of the model is explanation of the line spectra known
and unexplained at that time for ∼ 20 years.

NUCS 342 (Lecture 1) January 12, 2011 21 / 27



Angular momentum in quantum mechanics

Quantization of angular momentum

Further developments of quantum mechanics show that Bohr’s
quantization conditions are only approximate.

Current understanding is that for a quantum mechanical vector of

orbital motion ~L
1 The squared magnitude is quantized

| ~L |2= l(l + 1)~ (17)

with l being an integer number.

2 The projection on the z-axis of the coordinate system is quantized

LZ = m~ (18)

with −l ≤ m ≤ l being an integer number representing 2l+1
degenerate substates of the same energy.

Note that Bohr’s quantization condition implies L2 = n2~ in
disagreement with Eq. 17
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Angular momentum in quantum mechanics

Quantization of angular momentum

Quantization of L2 and Lz implies that Lx and Ly are undefined and
can not be measured, however,

L2x + L2y = L2 − L2z = [l(l + 1)−m2]~2 (19)

is a well defined quantity.

Semi classical picture of quantization of orbital angular momentum
l = 2 with 5 substates is shown in the figure below
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Spin

Spin

Further studies indicated that elementary particles have intrinsic
angular momentum and magnetic moment.

This was first measured for an electron by Stern and Gerlach in 1922.

Early interpretation of this observation were based on a model of a
particle spinning around its axis. This prompted the name spin.

However, its was quickly pointed out that rotational speed at an
electron’s equator has to be larger than the speed of light to explain
the magnitude of its spin.

Currently, spin of composite elementary particles are explained by
spins of their constituents (spin of a proton and a neutron result from
coupling of quark spins and angular moments, spin of nuclei from
coupling of proton and neutron spins and angular momenta).

For elementary particles believed to be structureless the spin is one of
their fundamental properties (like charge or mass).
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Spin

Spin

Spin differ from orbital angular momentum quantum number as it can
be half-integer, other than behaves the same.

Proton, neutron, electron, quarks and neutrinos are all spin 1
2

particles, with two magnetic substates.

Force carriers like gluons, photon, W and Z bosons as well as the
graviton have integer spin.
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Spin

Gyromagnetic factor for selected fermions

Fermion g-factor value Uncertainty unit

Electron ge 2.0023193043622 0.0000000000015 µB = e~
2me

Neutron gn 3.82608545 0.00000090 µN = e~
2mp

Proton gp 5.585694713 0.000000046 µB = e~
2mp

Muon g 2.0023318414 0.0000000012 µB = e~
2mµ

Note that all g-factors should be 1 according to our estimate from Eq. 15.
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Spin

Spin-statistics theorem

The spin of a particle has crucial consequences for its properties in
statistical mechanics.

Particles with half-integer spin obey Fermi-Dirac statistics, and are
known as fermions.

They are required to occupy antisymmetric quantum states. This
property forbids fermions from sharing quantum states — a restriction
known as the Pauli exclusion principle.

Particles with integer spin obey Bose-Einstein statistics and are
known as bosons.

These particles occupy ”symmetric states”, and can therefore share
quantum states
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