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Scattering via the Coulomb force

Charged-particle induced reactions

Nuclei contain protons and are charged with the charge of +Ze.

There is a long-range repulsive force between reacting nuclei:

~F =
1

4πε0

Z1Z2e
2

r2
~r

r
(1)

Since the force is repulsive the trajectories are hyperbolic.

If projectile energy is not sufficient to bring two nuclei to a distance
smaller than the range of nuclear interactions, the only result of the
collision is either elastic (Rutherford) or inelastic (Coulomb)
scattering.

For Rutherford scattering both projectile and target emerge from the
collision in their respective ground states. In Coulomb scattering
either the target or the projectile emerge in an excited state.

NUCS 342 (Lecture 22) March 16, 2011 3 / 29



Scattering via the Coulomb force

Trajectories in Rutherford scattering

Trajectories are hyperbolic.
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Scattering via the Coulomb force

Trajectories in Rutherford scattering

Trajectories depend on the impact parameter.
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The Geiger-Marsden experiment

The Geiger-Marsden experiment

Based on the knowledge of

the Coulomb force,

the Newton’s laws,

the conservation of linear momentum,

the conservation of angular momentum

Rutherford in 1911 derived the formula describing the number of
α-particles scattered from a thin gold foil at a given laboratory angle.

This formula fitted very well the experimental data taken by
Rutherford’s students Geiger and Marsden.

The derivation assumed that the whole mass of the gold atom and
the α particle was concentrated in a very small, point-like volume.
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The Geiger-Marsden experiment

The ironic ways of Nature

The agreement of the Rutherford formula with experimental data of
Geiger and Marsden implicated concentration of almost entire mass of
an atom in the nucleus of a femtometer size.

Thus Rutherford discovered 100 years ago the atomic nucleus.

Another Rutherford’s student, Niels Bohr proposed in 1913 the model
of Hydrogen atom based on the idea of the massive nucleus in the
centre but augmented in quantization conditions to explain the
observed Hydrogen line spectra.

The Bohr atom model jump started modern Quantum Mechanics

But Rutherford derived his formula based on Classical Mechanics,
which truly is not applicable to the scattering of elementary particles.

Fortunately, the Classical and Quantum Mechanics lead to the same
result for Rutherford scattering. Otherwise, the history of Science
could have been very different.
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The Geiger-Marsden experiment

Trajectories in Rutherford scattering

Trajectories depend on the impact parameter.
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The Geiger-Marsden experiment

Trajectories in Rutherford scattering

Trajectories depend on the impact parameter.
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The Geiger-Marsden experiment

The Geiger-Marsden experiment

Number of particles scattered at a given angle in Rutherford
scattering is calculable and well understood, since it is defined by the
well understood electromagnetic force.
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The impact parameter/scattering angle relationship

The impact parameter/scattering angle relationship

The key concept in Rutherford scattering is the relationship between
the impact parameter b and the scattering angle θ.
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The impact parameter/scattering angle relationship

The impact parameter/scattering angle relationship

Let us examine the change of momentum in the scattering.

The magnitude of the momentum stays the same, since this is the
elastic scattering.

The direction of the momentum is changed since this is a scattering.

The change of the direction results from Coulomb repulsion.

We assume after Rutherford that the target is very heavy and
therefore stationary during the scattering process.

More sophisticated calculations are done by making centre of mass
transformation.
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The impact parameter/scattering angle relationship

Momentum change in Rutherford scattering

The momentum
change is
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The impact parameter/scattering angle relationship

The momentum change

From the Newton’s second law

~F =
d~p

dt
=⇒ ∆~p =

∫
~Fdt (2)

The force is the Coulomb force

~F =
1

4πε0

Z1Z2e
2

r2
~r

r
(3)

Before we start integrating let us note that the trajectories are
symmetric with respect to the line defined by the distance of the
closest approach.
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The impact parameter/scattering angle relationship

Trajectories in Rutherford scattering

Trajectories are symmetric with respect to angle φ.
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The impact parameter/scattering angle relationship

The momentum change

The symmetry with respect to the line at φ = 0 implies

∆~p =

∫
~Fdt =⇒ ∆p =

∫
F cosφdt

∆p =
Z1Z2e

2

4πε0

∫
1

r2
cosφdt (4)

This integral can be carried over with a help of conservation of
angular momentum.
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The impact parameter/scattering angle relationship

The angular momentum

The angular momentum is

~L = ~r × ~p = m~r × ~v = m~r × (
d~r

dt
+ r

d~φ

dt
) = mr~r × d~φ

dt

L = | ~L |= mr2
dφ

dt
(5)
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The impact parameter/scattering angle relationship

The angular momentum

But also from the initial condition

L = mv0b (6)
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The impact parameter/scattering angle relationship

Conservation of angular momentum

Since the angular momentum is conserved

mr2
dφ

dt
= mv0b

dt

r2
=

dφ

v0b
(7)

Thus the change of momentum is

∆p =
Z1Z2e

2

4πε0

∫
dt

r2
cosφ =

Z1Z2e
2

4πε0

∫
dφ

v0b
cosφ =

=
Z1Z2e

2

4πε0

1

v0b

∫ φ>

φ<

cosφdφ (8)
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The impact parameter/scattering angle relationship

Integration limits

The limits for integration are defined by

φ< + φ> + θ = π

φ< = −φ> (9)

The solution to these equations is

φ< = −1

2
(π − θ)

φ> =
1

2
(π − θ) (10)

The integral is

∆p =
Z1Z2e
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4πε0

1

v0b

∫ φ>

φ<

cosφdφ =
Z1Z2e
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Z1Z2e

2
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2 sin(

1

2
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Z1Z2e
2

4πε0

2

v0b
cos(θ/2) (11)
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The impact parameter/scattering angle relationship

The impact parameter/scattering angle relationship

Combining Eq.2 with Eq.11 yields

∆p = 2p sin(θ/2) =
Z1Z2e

2

4πε0

2

v0b
cos(θ/2)

b =
Z1Z2e

2

4πε0

1

pv0

1

tan(θ/2)

b =
Z1Z2e

2

4πε0

1

2K

1

tan(θ/2)
(12)

with K being the initial kinetic energy for the projectile.

Equation 12 defines the relationship between the impact parameter
and the scattering angle.
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The impact parameter/scattering angle relationship

The distance of the closest approach

Assuming a head on collision the distance of the closest approach d0
can be calculated from the conservation of energy

K =
Z1Z2e

2

4πε0

1

d0

d0 =
Z1Z2e

2

4πε0

1

K
(13)

The relation between the impact parameter and the scattering angle
simplifies with the use of the distance of the closest approach
parameter

b =
d0
2

1

tan(θ/2)
(14)

The distance of the closest approach is sometimes called the
Sommerfeld parameter.
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The cross section

The cross section in Rutherford scattering

Particles from the ring defined by the impact parameters b and
b + db scatter between angles θ and θ − dθ
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The cross section

The cross section

Since particles from the ring defined by the impact parameters b and
b + db scatter between angles θ and θ + dθ the cross section for
scattering into the angle θ (called the differential cross section) is

dσ

dΩ
=

2πbdb

2πsinθdθ
=

b

sin θ

db

dθ
(15)

The relationship between b and θ for the Rutherford scattering yields

dσ

dΩ
=

(
d0
4

)2 1

sin4(θ/2)

=

(
Z1Z2e

2

4πε0

1

4K

)2
1

sin4(θ/2)
(16)

This is the Rutherford result explaining the Geiger-Marsden
experiment
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The cross section

The Geiger-Marsden experiment

Number of particles scattered at a given angle in Rutherford
scattering is calculable and well understood, since it is defined by the
well understood electromagnetic force.
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The cross section

The distance of closest approach revisited

The distance of closest approach d as a function of the impact
parameter can be calculated from the conservation of energy, now
withouth the assumption of the head-on collision

1

2
mv20 =

1

2
v2 +

Z1Z2e
2

4πε0

1

d
(17)

With a bit of algebra the above equation yields(
v

v0

)2

= 1− d0
d

(18)

Moreover for the distance of the closest approach the conservation of
angular momentum yields

mv0b = mvd (19)
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The cross section

The distance of closest approach revisited

From the conservation of angular momentum

b2 = d2

(
v

v0

)2

(20)

Combining with the conservation of energy

b2 = d2(1− d0
d

) = d(d − d0) (21)

Since

b =
d0
2

1

tan θ
(22)

above equations define the relationship between the distance of the
closest approach, the impact parameter and the scattering angle.
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The cross section

The distance of the closest approach

16O on 208Pb at 130 MeV

NUCS 342 (Lecture 22) March 16, 2011 28 / 29



The cross section

Cross section in Rutherford scattering

The deviation from the Rutherford cross section with the increasing
projectile energy are an evidence for nuclear reactions.
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