Compound and heavy-ion reactions

Introduction to Nuclear Science

Simon Fraser University SPRING 2011

NUCS 342 — March 23, 2011

March 23, 2011

1/32

NUCS 342 (Lecture 24)

Density of states in a compound nucleus

э

Image: A matching of the second se

Density of states in a compound nucleus

Resonant compound nuclear reactions

Density of states in a compound nucleus

3 Time reversal in nuclear processes

- Density of states in a compound nucleus
- 2
 - Resonant compound nuclear reactions
- 3 Time reversal in nuclear processes

- Density of states in a compound nucleus
- 2
- Resonant compound nuclear reactions
- 3 Time reversal in nuclear processes
- Semi-classical cross section for compound nucleus formation

March 23, 2011

2/32

5 Decay of highly excited compound

- Density of states in a compound nucleus
- 2
- Resonant compound nuclear reactions
- 3 Time reversal in nuclear processes
 - 4 Semi-classical cross section for compound nucleus formation
- 5 Decay of highly excited compound
 - Heavy-ion collisions

Density of nuclear states

- The number of quantized states per unit energy, referred to as the density of states, plays important role in nuclear reactions and decays.
- The reason is in quantum-mechanical behaviour of the nuclear reactions or decay.
- Reactions and decays can proceed only if there exist a final state with excitation energy, angular momentum and parity the system can populate in the exit channel.
- High density of states increases the rate, low density of state reduces the rate (potentially up to zero if no final state exists).
- An example is provided by the Fermi's golden rule and its application in β decay.
- In this lecture we examine the impact of the density of states on the compound nucleus formation and decay.

NUCS 342 (Lecture 24)

Density of nuclear states at low energy

- The data indicates that density of states is small near the ground state, with gaps on the order of a few hundred keV observed in some nuclei.
- Near the ground state pairing interactions have a significant impact on the density of states.
- The density of states near the ground states is smaller in even-even nuclei, moderate in odd-even nuclei and large in odd-odd nuclei.
- This is a consequence of the fact that unpaired nucleons can couple to various spins at comparable energy, which increase the number of states, while paired nucleons couple to spin 0 forming a single state.

・ロト ・四ト ・ヨト ・ヨト

Density of nuclear states at low energy

Number of states below 7 MeV in ¹⁶O (left) and ¹⁶N (right)

イロト (得) (ヨト (ヨト) ヨ

Density of nuclear states at low energy

- Density of states at low excitation energy depends on nuclear structure.
- Density of states is low in doubly magic nuclei, larger in singly magic nuclei and high in nuclei far from the magic numbers.
- The reason comes from the fact that in doubly and semi-magic nuclei energy larger than the shell gap is needed to form a state from the excitation across the shell gap.
- For nuclei away from the magic numbers states are made up by excitation withing the shell without crossing the shell gap.

・ロト ・同ト ・ヨト ・ヨト

Density of nuclear states at high energy

- Experimental data indicates that the number of excited states, thus the density of nuclear states increases with the excitation energy.
- Let us recall, that every excited state has a natural width

$$\Gamma = \frac{\hbar}{\tau} \tag{1}$$

- High energy excited states have lifetimes in the range of femtoseconds (10⁻¹⁵s) and the natural width is 0.7 eV.
- At increasing excitation energies the number of states becomes so high that average spacing between levels is comparable or smaller than the natural line width (~ 10⁶ states per MeV).
- In such case the levels start to overlap and the nuclear system ceases to be quantized, there are no gaps between states, and the excited nucleus behaves as a classical system with continuous excitation energy spectrum.

Resonant and non-resonant compound nuclear reactions

- Below, we will consider two scenarios for compound nuclear reactions depending on the excitation energy and the density of states in the compound system.
- Let us denote by *D* the average spacing between levels.
- *D* is inversely proportional to the level density.
- If the average spacing is large comparing to the natural line width of the states D >> Γ the compound nucleus can be formed through capture to well defined resonances and quantum mechanical treatment is needed.
- If the average spacing is small comparing to the natural line width of the states D >> Γ the formation of the compound nucleus can be described using classical method.

イロト イポト イヨト イヨト 三日

Resonant formation of a compound system

TARGET A

EXCITED STATE E_F OF COMPOUND NUCLEUS B (RESONANCE)

FINAL STATE OF COMPOUND NUCLEUS B

3

The cross section for a single resonance

- The resonant reaction in question is a two-step process.
- The cross section, therefore has to separate into a product of two terms, one representing a formation of a compound system, the other the decay

$$\sigma_{\gamma} \propto |< B + b | H_n | E_r >|^2 |< E_r | H_n | A + a >|^2$$
(2)

• The decay term is proportional to the decay width

$$\Gamma_{bB} \propto |< B + b \mid H_n \mid E_r >|^2 \tag{3}$$

• What about the formation term? To approach the calculations of the formation term let us look into the time reversal transformation.

Time reversal

- Time reversal *T* is a transformation of the equations of motion which exchanges time with negative time T(t) = -t.
- Let us consider Newton's second law:

$$\vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt} = m\frac{d^2\vec{r}}{dt^2}.$$
(4)

- The time reversal does not change the force $T(\vec{F}) = \vec{F}$ as it does not explicitly involve time.
- The same is true for the position vector $T(\vec{r}) = \vec{r}$.
- However, the time reversal changes the direction of the velocity vector

$$T(\vec{v}) = T(\frac{d\vec{r}}{dt}) = \frac{T(d\vec{r})}{T(dt)} = \frac{d\vec{r}}{-dt} = -\frac{d\vec{r}}{dt} = -\vec{v}.$$
 (5)

イロト (得) (ヨト (ヨト) ヨ

Time reversal

 But, time reversal does not change the direction of the acceleration vector, since it involves the second derivative of the position vector with respect to time; the time is inverted twice, therefore it is not inverted.

$$T(\vec{a}) = T(\frac{d^2\vec{r}}{dt^2}) = \frac{T(d^2\vec{r})}{T(dt^2)} = \frac{d^2\vec{r}}{(-dt)(-dt)} = \frac{d^2\vec{r}}{dt^2} = \vec{a}.$$
 (6)

- Because of all of the above the Newton's equations are invariant under time reversal.
- This implies that we can not distinguish between processes proceeding forward and backward in time based on Newton's equations alone.

Time reversal in nuclear processes

- Invariance under time reversal applies also to quantum mechanics.
- Quantum mechanics defines the rates for nuclear reactions.
- The consequence of time reversal is that there is no distinction between rates for formation or decay of a state, in particular the partial widths for both processes are the same Γ^f = Γ^d.
- Note, that the time reversal implies equivalence of partial decay and formation widths for the same process. Usually we form a system in a particular way, and it can decay in many other ways, thus the formation width is smaller than the total width.
- The formation, decay and total widths are equal only in the case of a state which can be formed and decay in one and only one way.

The cross section for a single resonance

- The resonant reaction in question is a two-step process.
- The cross section, therefore has to separate into a product of two terms, one representing a formation of a compound system, the other the decay

$$\sigma_{\gamma} \propto |< \mathbf{B} + \mathbf{b} \mid H_n \mid E_r >|^2 |< E_r \mid H_n \mid \mathbf{A} + \mathbf{a} >|^2 \tag{7}$$

The decay term is proportional to the decay width

$$\Gamma_{bB} \propto |< B + b \mid H_n \mid E_r >|^2 \tag{8}$$

• The formation term is proportional to the decay width

$$\Gamma_{aA} \propto |< A + a | H_n | E_r >|^2 = |< E_r | H_n | A + a >|^2$$
(9)

Breit-Wigner cross section

• Quantum mechanical analysis yields the following dependence on energy for the cross section of a resonant reaction:

$$\sigma_{BW}(E) = \pi \lambda^2 \frac{2J+1}{(2J_A+1)(2J_a+1)} (1+\delta_{aA}) \frac{\Gamma_{aA}\Gamma_{bB}}{(E-E_R)^2 + (\Gamma/2)^2}$$
(10)

with

- $\lambda = \frac{\lambda}{2\pi}$ representing reduced wavelength in the centre of mass frame,
- *J_a*, *J_A* and *J* representing spins of the projectile, target and the state in the compound system,
- δ_{aA} representing the effect of identical particles,
- $E_R = E_r Q$ representing the beam energy at the resonance,
- Γ_{aA} , Γ_{bB} and Γ representing partial width for formation of the compound through a + A, partial width for the decay of the compound through b + B and the total width $\Gamma = \Gamma_{aA} + \Gamma_{bB} + ...$

イロト イポト イヨト イヨト 二日

238 U(n, γ) compound nucleus resonances

NUCS 342 (Lecture 24)

March 23, 2011 16 / 32

Semi-classical cross section and angular momentum

• Let us look closer to the relation between the cross section σ , impact parameter *b* and the angular momentum L = bp at high excitation of the compound system when semi-classical treatment is valid.

- Momentum in the centre of mass is related to the wavelength $p = \frac{h}{\lambda} = \sqrt{2\mu E_{CM}}$.
- Angular momentum is quantized $L^2 = l(l+1)\hbar^2$.
- The black disc representing the geometric cross section can be split into concentric zones which correspond to different value of angular momentum.
- The cross section for the zone *l* is

$$\sigma_l = \pi b_{l+1}^2 - \pi b_l^2 = \pi (b_{l+1}^2 - b_l^2) \qquad (11)$$

Cross section for formation of a compound system

• The cross section for the zone I is

$$\sigma_{l} = \pi (b_{l+1}^{2} - b_{l}^{2}) = \pi \frac{\hbar^{2}}{p^{2}} \left((l+1)(l+2) - l(l+1) \right) = \pi \lambda^{2} 2(l+1).$$
(12)

 The total cross section is the sum over the partial cross sections σ₁ up to the maximum value of angular momentum in the reaction:

$$\sigma = \sum \sigma_l T_l \tag{13}$$

March 23, 2011

18/32

- T_I called transmission coefficients are real numbers between 0 and 1 representing a probability that the channel with angular momentum I will result in the reaction of interest.
- Semi-classically all T_l below the maximum angular momentum I_{max} are 1, all above 0.

Cross section for formation of a compound system

- The sum over partial cross sections with semi-classical transmission coefficients T₁ can be calculated analytically since it forms an arithmetic series.
- For the $L^2 = I(I+1)\hbar^2$

$$\sigma = \pi \lambda^2 2 \sum_{0}^{l_{\text{max}}} (l+1) = \pi \lambda^2 2 \left(\sum_{0}^{l_{\text{max}}} l + \sum_{0}^{l_{\text{max}}} 1 \right) = \pi \lambda^2 2 \left(\frac{l_{\text{max}}(l_{\text{max}} - 1)}{2} + l_{\text{max}} \right) = \pi \lambda^2 l_{\text{max}}(l_{\text{max}} + 1)$$
(14)

March 23, 2011

19/32

• With the above understanding the semi-classical cross section depends on the *I_{max}* value of the maximum angular momentum allowed in the reaction.

NUCS 342 (Lecture 24)

The maximum angular momentum transfer

 The *I_{max}* can be calculated semi-classically as the angular momentum in the centre of mass at the maximal inter-nuclear separation *R_{max}* which still leads to reaction

$$I_{max}(I_{max} + 1)\hbar^2 = R_{max}^2 p^2(R_{max})$$
(15)

 The momentum at this separation depends on the kinetic energy in the centre of mass available above the Coulomb barrier V_C(R_{max})

$$p^{2}(R_{max}) = 2\mu(E_{CM} - V_{C}(R_{max})) = 2\mu E_{CM} \left(1 - \frac{V_{C}(R_{max})}{E_{CM}}\right)$$
$$= \frac{\hbar^{2}}{\lambda^{2}} \left(1 - \frac{V_{C}(R_{max})}{E_{CM}}\right)$$
(16)

• The maximum momentum transfer is

$$I_{max}(I_{max} + 1) = \frac{R_{max}^2}{\lambda^2} \left(1 - \frac{V_C(R_{max})}{E_{CM}} \right)$$
(17)

March 23, 2011

20/32

The semi-classical formation cross section

• With the above expression for the *I_{max}* the semi-classical formation cross section becomes

$$\sigma = \pi \lambda^2 I_{\max}(I_{\max} + 1) = \pi R_{\max}^2 \left(1 - \frac{V_C(R_{\max})}{E_{CM}} \right)$$
(18)

 The maximum interaction radius can be taken approximately as the sum of radii plus ∆R=2 fm

$$R_{max} = R_a + R_A + \Delta R = 1.2(A_A^{1/3} + A_a^{1/3}) + 2$$
 [fm] (19)

The Coulomb barrier is

$$V_C(R_{max}) = \frac{1}{4\pi\varepsilon_0} \frac{Z_a Z_A e^2}{R_{max}}$$
(20)

• The energy in the centre of mass is

$$E_{CM} = \frac{\mu v^2}{2} \quad \mu = \frac{A_a A_A}{A_a + A_A} \tag{21}$$

and v is the initial speed of the projectile in the lab $_{\bigcirc}$.

NUCS 342 (Lecture 24)

March 23, 2011 21 / 32

Decay of a highly excited compound system

- The decay of the compound system does not depend on the way the compound was formed but only on the excitation energy and angular momentum of the compound.
- The decay of the highly excited compound system proceeds first by emission of the nucleons or α particles on the time scale of 10^{-19} s defined by the strong interactions involved.
- When the energy is not sufficient to continue particle emission the decay proceed via the γ-ray emission with the timescale 10⁻¹⁵ – 10⁻⁹ s defined by the electromagnetic interactions involved.
- This cooling process described by thermal equilibrium and statistical methods with decay probabilities which depend strongly on the densities of initial and final states.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

Decay of a highly excited compound system

Excitation function of highly excited compound

• The semi-classical formation cross section is

$$\sigma = \pi R_{max}^2 \left(1 - \frac{V_C(R_{max})}{E_{CM}} \right)$$
(22)

- Formation of compound system is highly suppressed below the Coulomb barrier.
- The formation cross section increases swiftly as a function of the beam energy available above the Coulomb barrier asymptotically approaching the geometric cross section $\sigma = \pi R_{max}^2$.
- As the excitation energy increases the decay channels change, with higher excitation energy favouring evaporation of larger number of light particles from the compound.

・ロト ・同ト ・ヨト ・ヨト

Excitation function in ${}^{209}Bi(\alpha,xn)$ reaction

Heavy-ion collisions

- Heavy ions are ions heavier than the α particle.
- Heavy-ion reactions require substantial energies, around 5 MeV/A for the projectile in the lab frame, to overcome the Coulomb repulsion.
- At these energies the momentum in the centre of mass is large, the reduced wavelength \hat{x} is short compared to the size of the ions and therefore a classical description is valid.
- In particular, heavy ion trajectories can be defined in a collisions.
- The classical analogue of a heavy ion collision is a collision of two charged liquid droplets.
- The name is intended to emphasize the contrast with light ions (proton, neutron, deuteron, triton, α, ³He) for which quantum mechanical description of collisions is required.

Heavy ion collisions

- Heavy ion collisions are characterized by
 - large number of nucleons participating in a collision,
 - significant Coulomb barrier,
 - large angular momenta, up to $\sim 150\hbar$ in peripheral collisions.
- The outcome of the collision is very strongly correlated to the impact parameter.
- Only relatively central collisions (small impact parameter) lead to complete fusion and compound nucleus formation.
- At large impact parameters the centrifugal barrier associated with large angular momentum prevent colliding ions from fusion.

・ロト (得) (ヨト (ヨト) ヨ

Classification of heavy ion collisions

Partial cross sections vs. angular momentum

- CN: compound nucleus
- FL: fusion-like
- D: deep inelastic
- QE: quasi elastic
- CE: Coulomb excitation
- EL: elastic

Interaction potentials

- Semi-classical analysis of heavy-ion collisions is based on the analysis of interaction potential *V* as a function of the radial distance *R* between ions.
- The interaction potential *V* is the sum of the nuclear, Coulomb, and centrifugal potential

$$V = V_N + V_C + V_L \tag{23}$$

- For large impact parameters angular momentum is large and the repulsive centrifugal potential dominates the interaction potential.
- For smaller impact parameters and smaller angular momenta the attractive nuclear potential results in a potential well developing at the radial distance comparable with sum of the radii.
- If the interacting ions are trapped in this potential well they will fuse and form a compound system.

・ロト ・同ト ・ヨト ・ヨト

Interaction potentials

Sum of the nuclear V_N , Coulomb V_C and centrifugal V_L potentials in heavy ion collisions as a function of radial distance R (in [fm]).

The significance of heavy ion collisions

- Heavy ion collisions are used for
 - produce nuclei at very high angular momentum/excitation energy
 - produce nuclei with large neutron deficiency
 - produce nuclei along the N = Z line
 - produce trans uranium elements.