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Nuclear reactions on Earth

@ Chemical reaction are commonly observed in the Earth environment.
@ There are, however, very few nuclear reactions occurring on Earth.

@ There are two reasons accounting for that fact

@ Nuclear reactions between charged ions (for example proton-induced
reactions) need to overcome the Coulomb barrier. There is not enough
thermal energy at standard temperatures to achieve that.

o Neutrons, which can penetrate into a nucleus without the Coulomb
barrier at standard temperatures, have 614 s (~ 10 min) half-life and
are present in the environment with extremely low quantities.

@ Nuclear reactions induced by cosmic rays in the upper parts of the
atmosphere are the source of radio nuclides ('#C) in the environment.

@ Nuclear decays are commonly observed.
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Man-made sources of neutrons

@ The lack of Coulomb barrier makes neutrons very attractive tool for
nuclear transmutation.

@ Short neutron lifetime prompted development of man made sources
of neutrons.

@ These sources fall into four general categories:

o Neutrons can be produced by nuclear reactions induced by « particles
from naturally occurring a emitters.

@ Neutrons can be produced by nuclear reaction induced by accelerated
beams of light ions.

e Neutrons can be produced from a spallation reaction.
@ Neutrons can be produced from fission.
@ These different categories provide sources of various characteristics
and can be selected and tuned for specific applications.
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Pu-Be neutron source

@ Let us calculate the Coulomb barrier for the reaction of a particles on

beryllium
2.4
Ve=144——" =26 [MeV] (1)
1.2(¥9 + Va)

@ This implies that for most of naturally occurring a emitters the energy
of a particles is high enough to induce nuclear transmutation of
beryllium.

@ Such mixtures are useful neutron sources since
Be+a—"2C—-"2C+n (2)

@ A popular source is a mixture of 24! Pu with °Be.

@ It produces 30 neutrons per million of emitted a particles.
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Radionuclide neutron sources

@ Other radionuclide neutron sources are

| Radionuclide | T2 | Neutron Yield [n/Ci] |

210pg 138 d 2.5x10°
238py 87.8y 2.2x10°
28 Am 433y 2.2x10°
242Cm 163 d 2.5x10°
252t 265y 4.3x10°

@ The decay rate conversion is 1 Ci = 3.7 x10'°Bq = 37 billion decays

per second.

@ The emission of neutrons is isotropic, meaning has equal probability

in any direction.
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Light ion reactions producing neutrons

@ A number of nuclear reaction producing neutrons in the final state
have been identified.

@ The most common are

d+d->n+°He Q = 3.25MeV
d+t—-n+a Q = 17.60 MeV
p+’'Li-n+'Be Q = -1.65MeV

d+°Be - n+""B Q = 3.79 MeV

@ The light ion beams are accelerated to the energies slightly above the
Coulomb barrier by charged particle accelerators.

@ Reaction kinematics can be used to tune the outgoing neutron energy
based on the energy of the incoming beam.
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Accelerator neutron sources

Van de Graaff accelerator
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Tandem Van de Graaff accelerator
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Reaction kinematics and neutron energy

@ Let us consider the reaction
p+'Li-n+'Be Q = -1.65MeV
@ For the neutrons emitted at zero degree
Bp = Pn + Pree
57Be = 5n - ﬁp
Pige = Pa + P — 2/PoPn

@ But the energy momentum relation gives
2
T=/ - 2=2T
5 == p m (3)

@ Which leads t0
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Reaction kinematics and neutron energy
@ The Q value definition gives
Q=Tge+ Tn—Tp (5)
@ Combining the above with
TTige =Tn+ Tp =24 TpTh (6)
leads to
7Q-Th+Tp)=To+ Tp—2,TpTh
8T, — 6T, —2/TpTh =7Q = -11.52 MeV (7)

@ The solution of the above equation gives energy of the
mono-energetic neutron beam as a function of the incoming proton
energy.
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Properties of neutrons from accelerator sources

@ Emission of neutrons from accelerator sources is anisotropic (not
isotropic).

@ Reaction kinematics focuses neutrons in the direction of the incoming
beam.

@ On the top of that there is a correlation between the direction of a
neutron and its energy, larger angles give smaller energy neutrons.

@ Neutron beams can be provided using collimation.

@ Neutron beam energies can be tuned using the energy of the
incoming ions and energy-angle correlation.

@ Neutron beams are used for basic and applied research, in particular,
studies of material properties.
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The Spallation Neutron Source

@ The Spallation Neutron Source is an accelerator-based neutron
source that provides the most intense pulsed neutron beams in the
world for scientific and industrial research and development.

@ ltis located in Oak Ridge Tennessee in US.

@ The accelerator is 1 GeV proton linear accelerator.

@ The beam is pulsed with the bunch time width of 1 us.
@ The spallation target is liquid mercury.

@ 20-30 neutrons are emitted per spallation.

@ Neutron beams are formed by slowing down in moderators and by
collimation.
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Accelerator neutron sources

Sealed tube neutron generators

@ Sealed tube neutron generators are small accelerators which
generate neutrons via

d+d — n+3He
d+t - n+a (8)
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Sealed tube neutron generators

Sealed tube neutron generators are portable neutron sources.

They generate quasimonoenergetic beams of neutrons with 14.1 MeV
energy for the d/t and 2.5 MeV energy for the d/d.

Neutrons from the d/t generator are emitted isotropically, while for the
d/d generator the emission is slightly focused towards the beam
direction.

Yields are on the order of 108 neutrons/s for the sealed tube d/t
generators, a factor of 50-100 smaller for the d/d generators.

The use of radioactive tritium is a concern in application of d/t
generators, this is a reason for the sealed tube solution.

Other technical implementations of d/t neutron generator can reach
fluxes of 10'"" particles per second.
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Nuclear Science facilities

@ The SFU’s Chemistry building is renovated as a part of the $50M
Chemistry building renovation funded by the provincial government
and Industry Canada’s Knowledge Infrastructure Program.

@ Renovation will be completed in the spring of 2011, new laboratories
will be operational in the summer of 2011.

@ Nuclear Science facilities of ~$750,000 value will include

e A renovated underground radiation vault, ready to host a D/T or D/D
neutron generator.

o A radio-chemistry laboratory above the vault, with a fume-hood,
glove-box and other equipment set up for chemical reprocessing of
radioactive materials.

o Conduits between the radiation vault and the radio-chemistry lab
designed to accommodate gas jet and a pneumatic system (a rabbit)
for transportation of radioactive samples.

o A separate laboratory for detector development and testing.
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The radiation vault
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The SIMON project at SFU

The Nuclear Science Laboratories

L
i

|

+

T

\
L2
=

WB -48x72

©

ANALYTICAL
PHYSICAL

FD
L
JT

;@
1
l
g

f
Lo %
15 2= 7 ss 1 1R 2l |
! i Py !
ol Bl el (S . |
R I e SO~ S I
|18 & ST T
23 13 1S i
|52 b
! B P |
? ” T i
St @ 8
R R o 3 P
S I R s Estiuiutsiatitetsiubal 1]
; : \ H
| I R I
| A s F
~ [ . - .
Sl B
XL g 1 Eglel
. - : x| :
! ST B 31 151
N \\‘%“\‘\QL‘L”‘\‘F‘\‘M [y | B
, : , ,
NI | |
B S 1 L !
B
| ! .
| ! 7
b
! b ! !
, L , W
' [
A
[ AT FAY ST

19/29

April 6, 2011

NUCS 342 (Lecture 29)



The SIMON project at SFU

The current status

NUCS 342 (Lecture 29) April 6, 2011



The SIMON project

@ The role of SIMON is to provide access to high intensity neutron
beams without a nuclear reactor or spallation source.

@ SIMON will comprise of
o D/T or D/D generator of fast neutrons
e Beryllium shroud multiplying fast neutrons through the (n,2n) reaction
o a Heavy-Water moderator
@ low-enriched Uranium for multiplication of moderated neutrons through
the neutron-induced fission.

@ The goal is to develop a medium-size device (less then 7 m long, 3 m
diameter), fitting the floor-plan of the radiation vault at SFU.

@ The achievable flux is being examined, the target is 103 n/cm?/s.

NUCS 342 (Lecture 29) April 6, 2011 21/29



The road map for SIMON: 2011

@ A $150K Canadian Foundation of Innovation/ British Columbia
Knowledge Development Fund proposal for a commercial neutron
generator has been awarded

@ GEANT4 Monte-Carlo simulation codes for the neutron moderator
and multipliers developed based on the high-precision models
available from GEANT4 for E < 20 MeV neutrons.

@ Optimization of the moderator and multiplier geometry based on the
GEANT4 simulations is currently pursued.

@ A 3x10® commercial generator will be acquired.

@ Licensing process for the renovated vault and a generator to be
acquired will be initiated in early 2011.

@ Funds for construction of a test moderator will be sought.
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Moderation of neutrons in GEANT4

(Left)Simulated random walk, (Right) Simulated time in the moderator.
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SIMON: back on the envelope estimates

@ The volume of 100 [cm] long moderator with 50 [cm] radius and a
bore for inserting the generator with 5 [cm] radius is

V =100 # 7 % (502 — 52) [cm3®] = 7.8 x 10° [cmq]

@ Number of neutrons in the moderator is equal to the generator output
f times the lifetime in the moderator v

n=fr=3x10% [part/s]*4x 1073 [s] =1.2x10° [part]
@ Number density of the neutrons in the moderator is

n 1.2x 108
- — =" " _1. Jem3
N V= 78x105 5 [part./cm’]
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SIMON: back on the envelope estimates

@ Assuming thermal neutrons with energy 0.025 [eV] and speed v of
2.2 [km/s]=2.2x10° [cm/s] the neutron flux in the moderator without
any neutron multiplication is

¢p=Nxv=15%22x10° [part/cm?/s] = 3.3 x 10° [part./cm?/s]

@ If there is a reaction in the moderator which contributes An neutrons
per second into the full moderator the number density in the
moderator will grow in a unit time according to

Ant Ant . Ant

@ Growth in time is described by
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SIMON: back on the envelope estimates

@ Let us assume thermal neutron induced fission of natural Uranium as
the multiplication reaction.
@ Number of thermal-neutron induced fission per second is

An = ¢radvol Ny = NVKadT/O'E Na
u

with

e x = 0.007 being 2%U content in Nat-y,

e aand d being "at-U target area and thickness, respectively, with the
ad = 60 [cm®] representing the volume of nat.y in the moderator in 0.5
cm thick, 2 cm long bars, 10 cm from the centre,

e ¥ = 2.5 being the average number of neutrons per 22U fission,

e o = 600 [b]=6x10722 [cm?] is the cross section for 0.025 [eV] thermal
neutron capture on 23°U,

e p = 19 [g/cm?] is the density of "at-y,

o u = 239 [g/mol] is the molar mass of "at-y,

e Ny = 6 x 102 is the Avogadro number.

NUCS 342 (Lecture 29) April 6, 2011 26/29



SIMON: back on the envelope estimates

@ Combining above equations the multiplication factor for 800 kg of
heavy water and 1.2 kg of "at-U becomes

N(t) . ad p
F(t) = ——= = (1 + )" with 1 =kv—vro=Nsy =5.7x 1073
(1) N(O) (1+2) KVVTO"uA
4
_ 10|
8
g 101
S
% 100
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1003 400 800 1200 1600

Time [s]
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The road map for SIMON: long-range

@ GEANT4 codes will be validated using results obtained with the
low-flux generator and the test moderator.

@ Working parameters for the final neutron generator and the moderator
will be specified and the final design will be defined based on the
validated calculation.

@ Nuclear engineering assistance will be sought in regard to shielding,
design, manufacturing and operation of the final neutron generator
and moderator assembly.

@ Utility of the SIMON for fundamental and applied research program
will be examined.
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The utility of SIMON

@ SIMON is a project with significant discovery potential
e Can become a driver for production of rare isotopes with large neutron
excess via neutron-induced fission.

e Consequently, it can support state of the art nuclear research probing
the beginning of the Universe and answering key fundamental scientific
questions regarding nucleosynthesis and distribution of elements.

@ SIMON provides an ideal training opportunities for future generation
of Highly Qualified Personnel in Nuclear Science.

@ SIMON may open a way to produce important radioisotopes for
medical and commercial applications without use of reactors.

@ For material sciences SIMON will enable neutron activation analysis
providing information on elemental composition on a
particle-per-billion level in a non-destructive way.

@ SIMON may also become a tool for neutron scattering aiding research
in material sciences.
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