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Nucleon density

Density of a nucleon

Knowing the radius of a nucleon rn ∼ 0.9 fm the volume occupied by
a nucleon is

v =
4

3
πr3 = 3.05 [fm3] (1)

This corresponds to a limit of density of nuclear matter inside a
nucleon of

ρmax =
1

v
= 0.327 [nucleon/fm3] ≈ 5.5× 1014 [g/cm3]. (2)

Comparing to the density of water of 1 [g/cm3] ρmax is hundred
thousand billion times larger.

However, it is not clear that the density of nuclear matter inside a
nucleus is the same as inside a nucleon.

As a matter of fact one may expect less dense packing of the nuclear
matter inside a nucleus and the ρmax being the stringent upper limit
for nuclear density.
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Nuclear radii

Radii measurements: photons

Measurement of atomic or nuclear radii require a probe.

Lets examine if photon is a convenient probe.

For an object of the size r to be observed using photons the
wavelength λ of the photon has to be smaller than the size of the
object.

Setting the wavelength λ < r , using the relativistic energy-momentum
condition for mass less particles E = pc and using de Broglie relation
between momentum and wavelength p = h

λ gives the following energy
condition for the photons

E =
hc

λ
>

hc

r
=

~c
2πr

. (3)
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Nuclear radii

Radii measurements: photons

It is possible to see atoms using photons. Indeed let us set r to the
typical size of an atom which is r = 10−10 m=0.1 nm.

E >
~c

2πr
=

197.33 [eV nm]

6.28 ∗ 0.1 nm
= 314 [ev] = 0.3 [keV] (4)

This implies that any simple X-ray generator (like Roentgen tube)
with the voltage potential above 0.3 keV can generate photons
capable to scatter on atoms providing information on radii.

If we use a size of a nucleus r = 1 fm we get

E >
~c

2πr
=

197.33 [MeV fm]

6.28 ∗ 1 fm
= 31.4 [Mev] (5)

Currently, free-electron lasers can generate photon beams up to
10 MeV coming close to the nuclear limit. However, direct
observation of nuclear radii using photon beams are difficult and rare.
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Nuclear radii

Radii measurements: electrons

If photons do not work for nuclei, what about measuring radii by
electron scattering?

Great idea! Sources of electrons will shortly be available up to
12 GeV (CEBAF-upgrade, Jefferson Laboratory in North Carolina).

Let us examine the resolution scale of CEBAF. At 12 GeV electrons
are surely relativistic as the energy is mach larger compared to the
electron rest energy of 511 keV.

For relativistic electrons we can use the same energy-momentum
relationship as for photons

E >
~c

2πr
=⇒ r >

~c
2πE

=
197.33 [MeV fm]

12000 [MeV]
= 0.016 [fm] (6)

CEBAF with 0.016 [fm] resolution should see inside a nucleon and
observe quarks! Watch the news.
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Nuclear radii

Continues Electron Beam Accelerator Facility
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Nuclear radii

Radii measurements: electrons

However, here is an issue: what does electron scattering really
measure in a nucleus?

Electrons are charged leptons. As such they do not interact via strong
interactions, but rather by electromagnetic and weak interactions.

Weak interaction is weak. As such, it is dominated by the
electromagnetic interaction and can be in the first approximation
neglected.

Neutrons are neutral, apart of small magnetic moment of a neutron
which we neglect for now, neutrons in a nucleus do not interact with
electrons!

Protons are charged. Protons do interact with electrons.

Therefore, electron scattering measures distribution of protons inside
a nucleus.
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Nuclear radii

Radii measurements: neutrons

A question then arises, what would neutron scattering measure?

Neutrons are neutral hadrons. As such they do interact via strong
interactions, but not by electromagnetic interactions (except some
small interactions caused by the magnetic moment).

Weak interaction is still present but it is dominated by the strong
interaction and can be in the first approximation neglected.

Neutron in a low-energy scattering process interacts with both
neutrons and protons inside a nucleus.

Therefore, neutron scattering measures distribution of both type of
nucleons inside a nucleus, so called mass distribution.

At high energies the structure of the neutron starts to play a role as
quarks rather than nucleons start to interact.
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Nuclear radii

Radii measurements: protons

Another question then arises, what would proton scattering measure?

Protons are charged hadrons. As such they do interact via strong
interactions, and also by electromagnetic interactions.

Weak interaction is still present but it is dominated by the
strong/electromagnetic interactions and can be in the first
approximation neglected.

Protons in the scattering process interacts with neutrons inside a
nucleus via strong interactions and protons inside a nucleus via strong
and electromagnetic interactions.

Therefore, proton scattering measures distribution of both type of
nucleons inside a nucleus which is a superposition of the charge
distribution measured with electrons and mass distribution measured
with neutrons.
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Nuclear radii

Matter/charge radii

In summary, distribution of mass (defined by both protons and
neutrons) may be different in a nucleus as compared to the
distribution of charge (defined by protons).

Different probes are sensitive to different distributions

electrons to charge distribution,
neutrons to mass distribution,
protons to mass and charge distribution.

Mass and charge distribution can have different radii, therefore we
define the mass radius RM and the charge radius RQ .

Measurements indicate RM > RQ and

RM ≈ rMA
1
3 = 1.4A

1
3

RQ ≈ rQA
1
3 = 1.2A

1
3
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Nuclear density

Nuclear density

Note that the observed proportionality between radii and root-cube of
the mass number implies a density inside nucleus which is
independent of the number of nucleons

ρ =
M

4
3π(RM)3

=
Au

4
3πr

3
M(A

1
3 )3

=
3u

4πr3M
(7)

where we neglected the mass defect as small compared to the mass of
the nucleus.

This density can be related to the density inside a nucleon form Eq. 2.
For a mass distribution inside a nucleus as compared to the density
inside a neutron

ρ = ρmax
u

mn

(
rn
RM

)3

= ρmax
931

939

(
0.9

1.4

)3

≈ 0.26ρmax (8)
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Nuclear density

Sharp surface density distribution

So far we assumed the sharp surface cut off, namely constant density
until the surface and no density beyond the surface.

We recognized the difference between the matter (gold) and the
charge (blue) radius.
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Nuclear density

Measured nuclear charge density distribution
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Nuclear density

Fermi distribution

Function which approximates well true nuclear density distribution is
the Fermi function

ρ(r) = ρ0
1

1 + exp
(
r−R1/2

a

) (9)

The radius R1/2 corresponds to a point at which density drops to half
of that in the centre. Indeed

ρ(R1/2) = ρ0
1

1 + exp
(
R1/2−R1/2

a

) = ρ0
1

1 + 1
=

1

2
ρ0 (10)

Experiments indicate that R1/2 = 1.12A
1
3 fm.

Note that there is no sharp cut off on the surface, on the contrary,
the density distribution extends to infinity!
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Nuclear density

Fermi distribution
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Nuclear density

Fermi distribution
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Nuclear density

Fermi distribution

Parameter a in the Fermi function defines the rate of change of
density in the vicinity of R1/2
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Nuclear density

Fermi distribution

Charge and matter radii are not the same for true nuclear density
distributions, especially far from stability.
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Nuclear density

Nuclear halo
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Nuclear deformation

Nuclear deformation

So far we considered radii which were constant and the same for all
direction in space.

This is applicable to nuclei with spherical distribution of matter and
charge.

However, only a very few nuclei turn out to be spherical! Nuclei, in
contrast to atoms, can deform and attain non-spherical shape.

For deformed nuclei the radius is not the same for all directions, it
becomes a function of coordinates

R = R(x , y , z) 6= const. (11)

Moreover, radius can change in time as a function of surface vibration
or rotation of the nucleus (we will come back to that later).
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Nuclear deformation

Multipole expansion

When radius is a function of the (x , y , z) coordinates it can be
expanded into a polynomial series and terms of increasing order can
be grouped starting with the constant term, the linear term, the
quadratic term, cubic term, etc.

The constant term is referred to as the monopole term (orange).

The linear term is referred to as the dipole term (the bad guy).

The quadratic term is referred to as the quadrupole term (kiwi).

The cubic term is referred to as the octupole term (pear).
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Nuclear deformation

Volume conservation

There are two conditions which need to be recognized when
considering nuclear deformation.

1 Nuclei are incompressible. This implies that the nuclear volume has to
be conserved. If we transform the radius to a function of (x , y , z)
coordinates we need to scale it at the end to ensure that the volume is
the same as before deformation.

2 Transformations which shift the centre of the nucleus without changing
its shape are spurious. They are not describing any new phenomena,
since we can always shift back the coordinate system into the centre of
the nucleus recovering the same system as before the transformation.
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Nuclear deformation

Dipole deformation of a circle

For simplicity let us consider a two dimensional case of a deforming a
circle of a unit radius. Before the deformation we have

x2 + y2 = 1 (12)

Let us try to deform it by adding the term x but keeping the surface
area constant. To do that we introduce the scaling term α

x2 + x + y2 = α (13)

But with a little math we see that

x2 + x + y2 = x2 + x +
1

4
− 1

4
+ y2 =

(
x − 1

2

)2

+ y2 − 1

4
= α

x2 + x + y2 = α =⇒
(
x − 1

2

)2

+ y2 = α− 1

4
(14)

thus Eq. 13 also defines the circle.
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Nuclear deformation

Dipole deformation of a circle

The consequence of the volume conservation is that the new circle
has to have the same area as the old one. This is enforced by proper
choice of the α constant α = 0.75.

Thus we did not deform the circle at all! We just shifted the centre.
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Nuclear deformation

Nuclear deformation

For realistic cases in 3 dimensional space it can be shown as well that
the dipole term under the requirement of volume conservation
corresponds to the shift of the centre of mass.

Thus dipole deformation is spurious, does not occur in atomic nuclei.

It implies that there are no linear terms in expansion of the radius into
a multipole series.

The firs two terms are monopole (spherical:orange) and quadrupole
(elliptical:kiwi).
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Nuclear deformation

Quadrupole deformation
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Nuclear deformation

Principle axes coordinate frame

For q quadruple-deformed nucleus with elliptical shape we can
distinguish a coordinate frame defined by the three axes of
deformation. For example we can define the long axis as z , the short
axis as x and the intermediate axis as y (other choices are allowed as
well).

This coordinate frame is often referred to as the principle axis
reference frame or the intrinsic reference frame.

Note that the deformed nucleus can have any orientation with respect
to the laboratory system.

Therefore any 3 dimensional orientation of the principle axis reference
frame with respect to the laboratory reference frame is allowed.
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Nuclear deformation

Quadrupole deformation
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Nuclear deformation

Principle axes reference frame

The mathematical description of an ellipsoidal surface is especially
simple in the principle axes reference frame(

x

Rx

)2

+

(
y

Ry

)2

+

(
z

Rz

)2

= 1 (15)

with Rx , Ry and Rz being the length of the x , y and z axes
respectively.

The special cases are the axial deformation with Rx = Ry . This is
significant as most of nuclei are believed to be axially symmetric.

The two possible axial cases Rx = Ry < Rz and Rx = Ry > Rz are
referred to as prolate (cigar) and oblate (pancake) deformations.

Note that Rx = Ry = Rz defines a sphere, or lack of deformation.
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Nuclear deformation

Prolate and oblate quadrupole deformation

Choosing the vertical axis as the z axis the oblate Rx = Ry > Rz and
the prolate Rx = Ry < Rz axially-symmetric quadrupole deformations
are shown on the left and the right hand side of the figure.
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Nuclear deformation

Quadrupole moment

Quadrupole moment is a measure of the deviation of an elliptical
shape from the spherical shape.

Quadrupole deformation deforms both, the mass and the charge
distribution.

The significance of the electric quadrupole moment of charge
distribution is in the fact that this is the quantity which defines
interaction of a deformed nucleus with electric field gradient.

Electric quadrupole moments result in shift of atomic levels through
the (hyperfine) interactions between nuclei and atomic electrons.
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Nuclear deformation

Quadrupole moment

The magnitude of a quadrupole moment depends on the choice of the
coordinate frame as well as mass/charge distribution in a nucleus.

For axially symmetric Rx = Ry quadrupole deformation with the z
axis chosen as the symmetry axis the magnitude of a electric
quadrupole moment is

Q =
2

5
Ze2(R2

z − R2
x ) =

2

5
Ze2(R2

z − R2
y ) (16)

With this choice of coordinates the quadrupole moment for the
prolate Rx = Ry > Rz deformation is positive Q > 0 and for the
oblate Rx = Ry < Rz deformation is negative Q < 0 .
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