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Shells in atoms and in nuclei

Why the atomic shell model works well in Hydrogen?

A hydrogen atom is a two-body system consisting of an electron and
proton. A motion of such system can be described fully and
accurately by a translational motion of the centre of mass of the
system and orbital motion around the centre of mass.

Since proton is ∼1836 times heavier then electron the centre of mass
coincides with good accuracy with the centre of the proton.

Nucleus is a point-like source of long-range electromagnetic force.

Electromagnetic interactions are well understood, in particular, the
Schrödinger equation for Coulomb potential has been solved
analytically.
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Shells in atoms and in nuclei

Why the same can not be done in nuclei?

A nucleus is a many-body systems of interacting particles. There are
no analytic solutions of the Schrödinger equations for such system,
also often only approximate solutions can be obtained.

In a nucleus there is no dominant centre of the long-range force.
Rather than that, the force is short range and there are many pairs of
interacting nucleons.

The nuclear force is still poorly understood.

Recent results indicate that nucleon-nucleon interactions are modified
in the presence of a third nucleon (the three-body force)

There are two types of particles (protons and neutrons).
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Shells in atoms and in nuclei

Then why and how does the shell model work for nuclei?

Interaction between nucleons in nuclei averages out and results in a
potential which depends on position but does not depend on time.
This potential is often referred to as the “nuclear mean field”.

A nucleus, therefore, is an example of a self-organizing system in
which the nuclear potential emerges from a large number of
nucleon-nucleon interactions.

There are some similarities between self-organization of nucleons in
nuclei and electrons in multi-electron atoms, with one significant
difference though, namely, that in multi-electron atoms the
electromagnetic potential between the nucleus and an electron
dominates the potential between electron-electron interactions. There
is no equivalent dominating potential in a nucleus.
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The mean-field potential

Two-body interactions

Note that the nucleon-nucleon interaction has a two-body character
(there are two nucleons involved).

If we would like to describe this fact in terms of the potential energy
of these interaction we would need to use Vi ,j with i representing one
of the nucleons and j representing the other one.

The total energy would be

E =
n∑

i=1

Ti +
n∑
i>j

n∑
j=1

Vi ,j (1)

with the second sum running over i > j to avoid double-counting of
the interaction energies.
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The mean-field potential

The mean field potential

The mean field potential attempts to replace the two-body interaction
of Eq. 1 with a potential Vi which depends only on the position of a
single nucleon. If this is successful many things become simple:

E =
n∑

i=1

Ti +
n∑

i=1

Vi =
n∑

i=1

(Ti + Vi ) =
n∑

i=1

Ei (2)

where Ei , Ti and Vi are single-particle total, kinetic and potential
energies, respectively.

This is especially convenient for solving the Schrödinger equation
since in case of Eq. 2 it separates into a set of independent
Schrödinger equations for each nucleon, while in case of Eq. 1 all
these equations are coupled.
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The mean-field potential

Residual interactions

With a tiny bit of simple algebra it can be shown

E =
n∑

i=1

Ti +
n∑
i>j

n∑
j=1

Vi ,j =
n∑

i=1

Ti +
n∑

i=1

Vi −
n∑

i=1

Vi +
n∑
i>j

n∑
j=1

Vi ,j

=
n∑

i=1

(Ti + Vi ) + (
n∑
i>j

n∑
j=1

Vi ,j −
n∑

i=1

Vi ) = Esm + Eres (3)

The Esm represent the shell-model energy specified by Eq. 2 while

Eres = (
n∑
i>j

n∑
j=1

Vi ,j −
n∑

i=1

Vi ) (4)

is the energy of the residual interactions “left out” by the shell model.

The shell model works well when the residual interaction are small.
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The mean-field potential

Calculation of the mean-field potential

Mean field potentials are calculated for nucleon in nuclei and for
electrons in multi-electron atoms or in molecules using very similar
methods (but very different interactions).

These methods take advantage of the fact that the ground-state
solution of the Schrödinger equation has the lowest energy available
for the system.

These methods seek a density distribution for nucleons or electrons
which minimizes the sum of kinetic and potential energy in the
Schrödinger equation for the system.

These methods were initially know as the Hartree or Hartree-Fock
methods, self-consistent mean field methods, and are presently know
as the density functional methods.

An underlying assumption in these methods is a proportionality
between the mean-field potential and density distribution in the
system of interest.
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Phenomenological (empirical) shell model

Phenomenological shell model

While above arguments explain why the shell model works for nuclei
the historical development of the shell model follow a different path.

The nuclear shell model was proposed to explain a collection of
experimental data which indicated existence of nuclear shells in
analogy to the atomic shell model.

When proposing this model the scientists recognized the difference in
the radial equation between the atomic and the nuclear shell model.

In particular the saturation property of the nuclear force (known from
the liquid drop model) called for a potential flat in the centre.

Scattering and reaction experiments called for diffused surface.

Early approximation of the nuclear potential were in form of a
potential well, modified harmonic oscillator (flat bottom) or later the
Wood-Saxon potential (proportional to Fermi density distribution).
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Phenomenological (empirical) shell model

Phenomenological shell-model potential
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Phenomenological (empirical) shell model

Experimental evidence for closed nuclear shells

Binding energies deviate from the liquid drop model with increased
binding at N or Z at the “magic” numbers of 2, 8, 20, 28, 50, 126,
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Phenomenological (empirical) shell model

Experimental evidence for closed nuclear shells

Neutron and proton separation energies show steps at the “magic”
numbers of 2, 8, 20, 28, 50, 126,
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Phenomenological (empirical) shell model

Experimental evidence for closed nuclear shells

Number of stable isotopes/isotones is significantly higher for nuclei
with the proton/neutron number equal to the magic number.

Nucleon capture cross sections are high for nuclei with one nucleon
shy from the magic number (single vacancy in a closed shell), but
significantly lower for nuclei with number of nucleons equal to the
magic number (at the closed shell).

Energy of the first excited state for nuclei with the proton or the
neutron number equal to the magic number are significantly higher
than for other nuclei.

Excitation probabilities of the first excited state are low for nuclei
with the proton or neutron number equal to the magic number.

Quadrupole moments vanish for nuclei with proton or neutron number
equal to the magic number.
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Phenomenological (empirical) shell model

Doubly magic nuclei
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The spin-orbit splitting

The confusion

A serious confusion arose in early comparisons of nuclear shell model
predictions with data.

The data clearly pointed out to nuclear magic numbers at 2, 8, 20,
28, 50, 126.

But nuclear shell model with a flat bottom potential gave the shell
gaps which explain the magic numbers at 2, 8, 20, 40, 70, 112.

Therefore, while the first three magic numbers were in agreement
with the data the consecutive higher ones were not.

The models was wrong, but not completely wrong.

An important piece was missing!
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The spin-orbit splitting

The spin-orbit splitting
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The spin-orbit splitting

The spin-orbit term

The spin-orbit term in nuclei reduces the energy of states with spin
oriented parallel to the orbital angular momentum while increasing
the energy of states with spin oriented opposite to the orbital angular
momentum.

This is different to the result of spin-orbit interaction in atoms where
states with spin oriented opposite to the orbital angular momentum
are lower in energy.

The spin-orbit interaction in atoms is understood from the
electromagnetic interaction of the magnetic moment of an electron
with the magnetic field resulting from orbiting a charged nucleus.

The spin-orbit interaction in nuclei results from the spin-orbit part of
the nuclear force (see Lecture 5, slide 27).
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The spin-orbit splitting

The spin-orbit term

The nuclear potential with the spin-orbit term is

V (r ,~L.~S) = V (r) + VLS(r)~L · ~S (5)

The radial part V (r) is still the flat bottom well with diffuse surface
(the Wood-Saxon potential), while the VLS is often taken as negative
derivative of V (r) with respect to r

VLS(r) = −dV (r)

dr
. (6)

For a flat bottom well with diffuse surface the derivative is peaked at
the surface.

The spin-orbit term makes the nuclear potential well wider for
nucleons with spin parallel to the orbital angular momentum and less
wide for nucleons with spin opposite to the orbital angular
momentum.

Wider well results in states of lower energies.
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The spin-orbit splitting

The spin-orbit term
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Total angular momentum

Total angular momentum

Total angular momentum is vector resulting from the coupling of the
orbital and spin angular momentum

~J = ~L + ~S (7)

The total angular momentum is quantized, the total angular
momentum quantum number is

j =

{
l + 1

2
~l parallel to ~s

l − 1
2
~l opposite to ~s

(8)

Without the spin-orbit term the energy of a state does not depend on
the total angular momentum ~j or the j quantum number.

However, with the spin-orbit term it does.
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Total angular momentum

The magnitude of the spin-orbit splitting

The magnitude of the spin-orbit splitting

VL,S(r ,~L.~S) = VLS(r)~L · ~S = −dV (r)

dr
~L · ~S (9)

depends on the total angular momentum ~J of the orbital of interest.

The magnitude of the ~L · ~S term can be computed following the fact
that the square of the total, orbital, and spin angular momenta are
defined by the corresponding quantum numbers

~J2 = (~L + ~S)2 = ~L2 + 2~L · ~S + ~S2

~L · ~S =
1

2

(
~J2 − ~L2 − ~S2

)
~L · ~S =

1

2
(j(j + 1) − l(l + 1) − s(s + 1)) (10)
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Total angular momentum

The magnitude of the spin-orbit splitting

Since

~L · ~S =
1

2
(j(j + 1) − l(l + 1) − s(s + 1)) (11)

and

j =

{
l + 1

2
~l parallel to ~s

l − 1
2
~l opposite to ~s

(12)

then

~L · ~S =

{
sl = 1

2 l
~l parallel to ~s

−s(l + 1) = −1
2 (l + 1) ~l opposite to ~s

(13)
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Modified spectroscopic notation

Modified spectroscopic notation

So far we used the orbital angular momentum quantum number to
label the state according to the spectroscopic notation.

As a consequence we had the l = 0 s states, the l = 1 p, l = 2 d
states etc.

The modified spectroscopic notation adds as a subscript the total
momentum quantum number to indicate the coupling between the
orbital and spin angular momentum.

Thus we have p1/2 and p3/2 states of l = 1, d5/2 or d3/2 states of
l = 2, etc.

Note that we have only s1/2 since for the l = 0 (no orbital angular
momentum) there can not be parallel or opposite coupling.

Each state of total angular momentum j has 2j + 1 substates of the
same energy which differ by the azimuthal (magnetic) quantum
number mj which runs from −j up to +j .
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Modified spectroscopic notation

The parity of single-particle orbitals

Single particle orbitals are also assigned the parity quantum number π.

The parity is a multiplicative quantum number. The total parity of a
system is a product of the parities of all subsystems.

The parity for a shell model state is defined by the product of the
parity of the radial wave function, parity of the spherical harmonic,
the parity of the spin wave function and intrinsic parity of a nucleon.

The parity of radial function, the spin function, and intrinsic parity of
a nucleon are all positive.

Thus, the parity of a single-particle orbital is fully defined by the
parity of the spherical harmonics and is πl = (−1)l .

Parities are significant as they can be measured and compare with
model predictions.
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Extreme single-particle shell model

Extreme single-particle shell model

The greatest success of the shell model is in reproducing properties of
odd-mass nuclei around doubly-magic cores.

The model correctly predicts excitation energies, spin/parities,
magnetic and quadrupole moments for the ground state and
low-energy excited states.

The model reproduces these properties assuming that a single nucleon
is placed in an orbit above a closed shell or that a single nucleon is
removed from an orbit below a closed shell.

Applications near doubly-magic nuclei are often referred to as extreme
single-particle shell model since the model space includes a single
particle or a single hole (vacancy) outside a closed-shell core.

The success of the extreme single-particle shell model is a
consequence of the fact that the residual interactions between a single
valence particle or hole with the closed shell core is small.
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Nuclei near 16O

Nuclear vs. Atomic shell model
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Nuclei near 16O

Nuclei near 16O

Let us apply the extreme single-particle shell model to predict spin,
parities and excitation energies near the doubly-magic 16O.

For the reasons to be discussed in the next lecture the spin and parity
of the 16O core is 0+.

The orbitals above the N = Z = 8 shell gaps are positive-parity d5/2

and s1/2 states. Therefore, we expect for 17O and 17F the ground
state of positive parity and spin of 5/2 and the first excited state of
positive parity and spin of 1/2. This is indeed the case, see Fig. 6.7
in your text book or this link.

The orbitals below the N = Z = 8 shell gaps are negative-parity p3/2

and p1/2 states. Therefore, we expect for 15O and 15N the ground
state of negative parity and spin of 1/2 and the first excited state of
negative parity and spin of 3/2. This the case for the ground state
but not for the first excited state this link.
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Nuclei near 16O

Ground state in 17O

PROTONS NEUTRONS
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Nuclei near 16O

Ground state in 17F

PROTONS NEUTRONS

NUCS 342 (Lecture 4) January 26, 2011 30 / 35



Nuclei near 16O

Excited state in 17F

PROTONS NEUTRONS
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Nuclei near 16O

Ground state in 15O

PROTONS NEUTRONS
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Nuclei near 16O

Ground state in 15N

PROTONS NEUTRONS
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Nuclei near 16O

Nuclei near 16O

If we look closer into excited states near 16O we will see
negative-parity states of spin 1/2 and 3/2 in 17O and 17F as well as
positive-parity states of spin 3/2 and 5/2 in 15O and 15N.

For these states to be explained multi-nucleon configurations have to
be considered, including the residual interactions.

This is going to be done in the next lecture.

For now we observe that even the extreme single-particle shell model
breaks pretty quickly.

The reason is that the residual interactions are significant and can
lead to energy gains comparable to the energies of the shell gap.

In such a case it may be energetically favoured to promote a nucleon
across a shell gap to gain energy from residual interaction despite of
the energy increase associated with going into a higher-energy
single-particle state.
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Nuclei near 16O

Cross-gap excitation in 17O

PROTONS NEUTRONS
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