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Binary collisions

Binary collisions

Predominant fraction of nuclear reactions of importance to
nucleosynthesis involve binary collisions. This means that there are
two particles in the entrance channel and two particles in the exit
channel.

The detail analysis of the reaction process requires information about
the interactions (or the Hamiltonian) for the reactions. This type of
analysis is usually referred to as the reaction dynamics.

A lot can be said about binary reactions based on application of the
conservation laws, in particular conservation of linear momentum,
conservation of angular momentum, and conservation of energy. This
type of analysis is usually refereed to as the reaction kinematics.

Note that the reaction kinematic analysis does not require any
knowledge about interactions between particles during the collision.
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Conservation of linear momentum

Conservation of linear momentum

Newton’s equation imply that in the absence of a net force ~F = 0
linear momentum is conserved:

m
d~a

dt
=

d~p

dt
= ~F = 0 =⇒ ~p = const.

The Newton’s second law when expressed in term of momentum is
valid for non-relativistic and relativistic mechanics. In the relativistic
case the definintion of momentum has to include the γ factor

~p = γm~v

Thus the linear momentum is conserved for any magnitude of speed.

The collisions of interest to nucleosynthesis can be treated
non-relativisticly, below we assume γ ≈ 1.
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Conservation of linear momentum

Conservation of linear momentum

Conservation of linear momentum does not require any prior
knowledge on the forces acting during the reaction. This is a
consequence of the third Newton’s law,

~F12 = −~F21
which implies that the net sum of all forces acting between particles
in the entrance channel is zero.

Conservation of linear momentum implies that the momentum before
the collision is equal to the momentum after the collision. As such we
can use it to deduce parameters for exit channel knowing parameters
for the entrance channel, or vice versa.

Note that linear momentum is not an invariant. This implies that we
can calculate a different value of the linear momentum if we are using
different reference frames. But in a given reference frame momentum
prior and after the collision is the same.
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Conservation of kinetic energy

Conservation of kinetic energy

Kinetic energy for a particle in momentum ~p in the non-relativistic
approximation is defined as

K = E −mc2 =
√
~p2c2 + m2c4 −mc2 ≈

~p2c2

2mc2
=
~p2

2m
=

m~v2

2

The total energy E is conserved in binary collisions

E1 + E2 = E3 + E4

In general, the kinetic energy is not conserved in binary collisions

K1 + K2 6= K3 + K4

However, there is a class of collisions called elastic collisions or elastic
scattering for which the kinetic energy is conserved

K1 + K2 = K3 + K4
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Elastic collisions

Elastic collisions

In an elastic collision/scattering particles in the exit channels are the
same as in the entrance channel 1 � 3 and 2 � 4, but the momenta
of particles in the exit channels are different then in the entrance
channel ~p3 = ~p′1, ~p4 = ~p′2

Conservation of linear momentum and kinetic energy in a binary
elastic collision implies

~p1 + ~p2 = ~p′1 + ~p′2

~p21
2m1

+
~p22

2m2
=

~p′
2

1

2m1
+

~p′
2

2

2m2

The above equations can be rearranged reading

~p1 − ~p′1 = ~p′2 − ~p2
~p21

2m1
−

~p′
2

1

2m1
=

~p′
2

2

2m2
−

~p22
2m2
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Elastic collisions

Elastic collisions

Further rearrangements lead to

~p1 − ~p′1 = ~p′2 − ~p2
1

2m1
(~p21 − ~p′

2

1) =
1

2m1
(~p1 − ~p′1)(~p1 + ~p′1) =

=
1

2m2
(~p′2 − ~p2)(~p′2 + ~p2) =

1

2m2
(~p′

2

2 − ~p22)

Inserting the first equation to the second results in

1

2m1
(~p1 + ~p′1) =

1

2m2
(~p′2 + ~p2)

The same quation expressed in terms of velocities reads

~v1 + ~v ′1 = ~v ′2 + ~v2 or ~v1 − ~v2 = −(~v ′1 − ~v ′2)
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Elastic collisions

Elastic collisions

Note that ~v1 − ~v2 is a relative velocity in the entrance channel while
~v ′1 − ~v ′2 is the relative velocity in the exit channel.

Equation

~v1 − ~v2 = −(~v ′1 − ~v ′2)

implies that the relative velocity changes sign during the ellastic
collision. Always!

Based on the above a simpler set of equations to solve for ellastic
collision/scattering is

~p1 + ~p2 = ~p′1 + ~p′2

~v1 − ~v2 = −(~v ′1 − ~v ′2)
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Conservation of total energy

Conservation of total energy

Total energy for a particle in momentum ~p in the non-relativistic
approximation is defined as

E = K + mc2 =
√
~p2c2 + m2c4 ≈ mc2 +

~p2c2

2mc2
=

= mc2 +
~p2

2m
= mc2 +

m~v2

2

Conservation of energy in a binary collision calls for

E1 + E2 = K1 + m1c
2 + K2 + m2c

2 =

= K3 + m3c
2 + K4 + m4c

2 = E3 + E4

To analyze further consequences of energy conservations it is useful to
use the Q value

Q = c2[m1 + m2 − (m3 + m4)] = K3 + K4 − (K1 + K2)
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Conservation of total energy

Exothermic and endothermic reactions

Exothermic reaction are defined as these which release energy in form
of heat. This implies the net kinetic energy in the exit channel larger
than in the entrance channel and

K3 + K4 − (K1 + K2) > 0 =⇒ Q > 0 and also

m1 + m2 − (m3 + m4) > 0 =⇒ m1 + m2 > m3 + m4

The opposite is true for endothermic reactions

K3 + K4 − (K1 + K2) < 0 =⇒ Q < 0 and also

m1 + m2 − (m3 + m4) < 0 =⇒ m1 + m2 < m3 + m4
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Conservation of total energy

Threshold for endothermic reactions

The endothermic reactions can not proceed unless the energy
available in the system is sufficient to convert lighter masses m1 and
m2 into the heavier masses m3 and m4. At the threshold energy ET

(m1 + m2)c2 + ET = (m3 + m4)c2 thus

ET = c2(m3 + m4 −m1 −m2) = −Q

This threshold energy has to come from the kinetic energy in the
entrance channel

−Q = ET = K1 + K2 − K3 − K4 > 0 =⇒ K1 + K2 > K3 + K4

Thus in endothermic reactions the kinetic energy in the entrance
channel has to be large enough to overcome the energy thershold
ET = −Q.
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Conservation of total energy

Binary reaction kinematics

Kinematics for binary reactions is defined by conservation of linear
momentum and conservation of energy. Making analogy to the case
of ellastic collision/scattering

~p1 + ~p2 = ~p3 + ~p4

K1 + K2 + Q = K3 + K4

Q = (m1 + m2 −m3 −m4)c2

The case of the ellastic collision results from the above equations
while setting 1 � 3, 2 � 4 and Q = 0.
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Inelastic collisions

Inelastic collisions

The case of the inellastic collision results from the above equations
for particles in the exit channel being the same as in the entrance
channel, except for internal excitations (for example, vibration,
rotation or excitation to a higher shell).

This implies Q 6= 0, usually with Q < 0 implying excitation of the
projectile or target which results in larger net mass in the exit
channel.

The equations are:

~p1 − ~p′1 = ~p′2 − ~p2
1

2m1
(~p21 − ~p′

2

1) + Q =
1

2m1
(~p1 − ~p′1)(~p1 + ~p′1) + Q =

=
1

2m2
(~p′2 − ~p2)(~p′2 + ~p2) =

1

2m2
(~p′

2

2 − ~p22)
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Centre of mass transformation

Centre of mass transformation

The centre of mass transformation is a change of variables from an
arbitrary coordinate system called lab. to the centre of mass reference
frame called CM.

For a binary collision of X and Y the position of the centre of mass is:

~RCM =
mX~r

X + mY~r
Y

mX + mY
.

The velocity of the centre of mass is:

~V CM =
mX~v

X + mY~v
Y

mX + mY
.

The relative velocity is:
~v = ~vY − ~vX
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Centre of mass transformation

Centre of mass transformation

The velocities of X and Y in the centre of mass are:

~vXCM = ~vX − ~V CM = ~vX − mX~v
X + mY~v

Y

mX + mY

~vXCM =
mY

mX + mY
(~vX − ~vY ) = − mY

mX + mY
~v .

By the same token

~vYCM =
mX

mX + mY
~v .

The relative velocity in the Centre of Mass is is:

~vM = ~vYCM − ~vXCM =
mX

mX + mY
~v +

mY

mX + mY
~v =

mX + mY

mX + mY
~v = ~v

which implies that the relative velocity is the same in the CM and lab.
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Centre of mass transformation

Centre of mass transformation

The velocities of X and Y in the centre of mass are:

~vXCM = − mY

mX + mY
~v

~vYCM =
mX

mX + mY
~v

The momentum in the Centre of Mass is is:

~p = mX~v
X
CM + mY~v

Y
CM = − mXmY

mX + mY
~v +

mxmY

mX + mY
~v = 0

which makes the Centre of Mass a very convenient reference frame to
analyze collisions.
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Elastic collision in the centre of mass

Elastic collision in the centre of mass

Equations to solve for ellastic collision/scattering in the center of
mass are

~p1 + ~p2 = ~p′1 + ~p′2 = 0

~v1 − ~v2 = −(~v ′1 − ~v ′2)
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