

Introduction to nuclear and particle physics

Martin Jurkovic (tutorials)

Laura Fabbietti (lecture)

I. Physics of the atomic nucleus

- 2. A first view on nuclear properties
- 3. Nuclear Magnetic Momenta
- 4. Models of the nucleus
- 5. Nuclear Decays
- 6. Nuclear Fusion and Nuclear Fission
- 7. Mössbauer Effect
- 8. Nuclear Magnetic Resonance in medicine
- 9. Particle detection
- 10. Scattering processes
- 11. Nucleosynthesis

http://www.e12.physik.tu-muenchen.de/staff/profs/fabbietti.html.en

• Povh, Rith, Scholz, Zetsche:

Particles and nuclei (Springer 1999)

• Krane:

Introductory nuclear physics (Wiley & Sons 1987)

• Segre:

Nuclei and particles (Benjamin 1965) Perkins:

- Introduction to high energy physics (Addison Wesley 1986)
- Halzen, Martin:

Quarks and leptons (Wiley & Sons 1984)

• Kane:

Modern elementary particle physics (Addison Wesley 1987)

Particles Zoo

Fundamental interactions

Discovery of the electron

Joseph John Thomson 1897

Abb. 1.5 Joseph John Thomson (1856–1940), der für seine Untersuchungen des Elektrons und der Isotope berähmte englische Physiker. Er leitete als dritter Direktor das Cavendish-Laboratorium. Ein Foto im Maxwell-Hörsaal des Laboratoriums zeigt ihn bei der Betrachtung einer Kathodenstrahlröhre. Allem Anschein nach war Thomson etwas ungeschickt, aber er verstand die Möglichkeiten einer Apparatur sehr genau. (Cavendish-Laboratorium, Universität Cambridge)

Abb. 1.6 (a) Darstellung einer von Thomsons Entladungsröhren aus dem *Philosophical Magazine* (44, 293 [1897]). Die von der Kathode A erzeugten Elektronen können durch einen außen angebrachten Magneten abgelenkt und in einen Kollektor (Faraday-Käfig) geleitet werden, der an ein Elektrometer angeschlossen ist, das die Gesamtladung mißt. (b) Eine andere von Thomsons Entladungsröhren aus demselben Journal. Das von der Kathode C emittierte Strahlenbündel wird in A und B gebündelt und passiert zwischen D und E ein elektrisches Feld. Senkrecht dazu wird durch außerhalb der Röhre angebrachte Spulen ein Magnetfeld erzeugt.

$$Q = Ne$$

$$W = \frac{N}{2}mv^{2}$$
Classically produces heat
$$B: \frac{mv^{2}}{r_{B}} = evB \frac{mv}{e} = Br_{B}$$

$$\Rightarrow \frac{2W}{QB^{2}r_{B}^{2}} = \frac{e}{m}$$
Independent from the cathode material and the gas sort

Discovery of "X-Strahlen" Röntgen 1895

Abb. 1.8 Eine der allerersten Aufnahmen von Röntgen mit Hilfe der von ihm entdeckten X-Strahlen oder »Röntgenstrahlen«, Sie zeigt die Knochen einer Hand. Das am 22. Dezember 1895 aufgenommene Bild wird heute im Deutschen Museum in München aufbewahrt.

Discovery of the atomic nucleus Rutherford, Geiger, Marsden 1908 - 1913

Discovery of the proton as a product of a nuclear reaction Ernest Rutherford 1919

 $^{14}N+ ^{4}He \rightarrow ^{12}O + p$

A positive particle was created with larger range than ⁴He

Laura Fabbietti

Abb. 6.5 Von Blackett beobachtete Zertrümmerung eines Stickstoffkerns in einer Nebelkammer. Die Quelle enthält Pb²¹² + Bi²¹² + Po²¹² im radioaktiven Gleichgewicht und emittiert α-Teilchen mit zwei verschiedenen Reichweiten: 8,6 und 4,8 cm. Ein Teilchen mit der längeren Reichweite trifft auf einen Stickstoffkern und bricht ihn entsprechend der Reaktion ₂N¹⁴ + ₂He⁴ = ₈O¹⁷ + ₁H¹ auf. Die längere quer verlaufende Spur stammt vom Proton, die andere ist die von ₈O¹⁷. (P. M. S. Blackett und D. Lea in *Proceedings of the Royal Society, London 136*. 325 (1932))

Discovery of the neutron

James Chadwick 1932

n was detected measuring the recoil energy of the ejected nuclei.

ווו

Segrè: Nuclei and Particles

How to measure nuclear mass?

Ion source + electric and magnetic field

$$F_{el} = qE = \frac{mv^2}{r_E} \rightarrow E_{kin} = \frac{mv^2}{2} = \frac{qEr_E}{2}$$
$$F_{mag} = qvB = \frac{mv^2}{r_B} \rightarrow p = mv = qBr_B$$
$$v = \frac{qBr_B}{m} \quad \frac{q}{m} = \frac{Er_E}{B^2 r_B^2}$$

E= Energy Filter

B= momentum filter

Mass Standard: 1u=1/2 m(¹²C)= 931.49... MeV/c²

Penning Trap

Laura Fabbietti

Static electric quadrupole and static magnetic field

Penning trap, w = 30w = 300w

Nuclear binding energy per nucleon

Maximum @ A=60

BE roughly constant throughout most of the periodic table -->

Constant density of all nuclei? --> Liquid drop Laura Fabbietti Povh et al., "Particles and nuclei"

Liquid Drop Model

- Spherical dorp to minimize energy in absence of external forces
- $R \div 1/N^3$, N= Nr. of molecules in the drop
- a= Binding energy of each molecule to the drop Energy= 0 when the molecules are separated by large distances E= -aN + $4\pi R^2T$
- T: Surface tension of the liquid -> BE = aN $\beta N^{2/3}$ binding energy of the drop
- Given the energy Q of the drop on the surface $E = Q^2/(8\pi\epsilon_0 R)$ B = aN $-\beta N^{2/3} -\gamma Q^2/(N^{1/3})$

$$B(Z,A) = a_V A - a_S A^{\frac{2}{3}} - a_C \frac{Z^{1/2}}{A^{1/3}}$$

 a_V : Volume Term a_S : Surface Term a_C : Coulomb Term

If we stick to this formula for a given A and B the maximum is found for Z=0 That means that something is missing in the formula

1. p and n are in two different potential wells. If DE is the energy needed to move 1 proton to the next energy level:

N-Z= 2, 4, 6
$$\Delta E= 1 2 5 8..$$

 $E \div (N-Z)^2 \Delta E/8$

The sign is determined by the fact that the Binding Energy is reduced by placing protons in the higher neutron orbitals

Asymmetry Term: $-a_A(Z-N)^2/A$

The spacing energy ΔE is inverse proportional to the well volume --> $\Delta E{\div}1/A$

2. 2p are always more bound than 1p --> <u>Pairing Term</u> = 0 for odd nuclei > 0 for even-even nuclei $a_P/A^{1/2}$ < 0 for even-even nuclei $-a_P/A^{1/2}$ $a_P\sim 12$ MeV

Total Binding Energy

$$B = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(A - 2Z)^2}{A} \begin{cases} \pm 0 \\ \pm \frac{a_P}{A^{1/2}} \end{cases}$$

 $a_V = 15.5 MeV$ $a_S = 17.23 MeV a_C = 0.697 MeV$ $a_A = 23.285 MeV a_P = 12 MeV$

found by fitting the data

Contributions to the nuclear binding energy

Figure 3.17 The contributions of the various terms in the semiempirical mass formula to the binding energy per nucleon.

Krane: Introductory nuclear physics

ΠІП

 β +decay : $p \rightarrow n + e^+ + v_e$

 β ⁻decay : $n \rightarrow p + e^{-} + \underline{v}_{e}$