Detection Methods and Detectors

Energy Loss

TOF detectors

Gas Detectors

Cherenkov Detectors

Tracking

Dilepton Reconstruction

Range of charged particles

(E. Segrè, Nuclei and particles)

Alpha-particles in air (discovery of the proton) (E. Segrè, Die großen Physiker...)

Abb. 6.5 Von Blackett beobachtete Zertrümmerung eines Stickstoffkerns in einer Nebelkammer. Die Quelle enthält Pb²¹² + Bi²¹² + Po²¹² im radioaktiven Gleichgewicht und emittiert α-Teilchen mit zwei verschiedenen Reichweiten: 8,6 und 4,8 cm. Ein Teilchen mit der längeren Reichweite trifft auf einen Stickstoffkern und bricht ihn entsprechend der Reaktion ₇N¹⁴ + ₂He⁴ = ₈O¹⁷ + ₁H¹ auf. Die längere quer verlaufende Spur stammt vom Proton, die andere ist die von ₈O¹⁷. (P. M. S. Blackett und D. Lea in Proceedings of the Royal Society, London 136. 325 [1932])

Figure 2-4 Cloud-chamber tracks of alpha rays showing delta rays. The first picture is in air, the last three in helium; the gas pressure in the chamber is such that the tracks cross about 10^{-5} g cm⁻² of air equivalent. Note nuclear collisions in the section on the right. [T. Alper, Z. Physik, 67, 172 (1932).]

Energy loss of charged particles due to ionisation

Range of charged particles (aus: C. Grupen, Teilchendetektoren)

Muons in rock:

Standard - Fels

Z = 11, A = 22 P = 3g/cm³

10

100

Myonenenergie [GeV]

1000

R[g/cm²]

107

Reichweite [g/cm²]

10

10

Energy loss of various charged particles in air (C. Grupen, Teilchendetektoren)

Bragg curves (E. Segrè, Nuclei and particles)

Energy loss of minimum ionising particles

Absorber
$$\frac{dE}{dx}\Big|_{min}$$
 $\left[MeVcm^{-1}\right]$ $\frac{dE}{d(\rho x)}\Big|_{min}$ $\left[MeVg^{-1}cm^{2}\right]$ Water2.032.03Xenon (gaseous) 7.3×10^{-3} 1.24Iron11.71.48Lead12.81.13Hydrogen (gaseous) 3.7×10^{-4} 4.12

RAW Data

Charge [ADC chan.]

Contributions to the energy loss of muons in iron (C. Grupen, Teilchendetektoren)

Multiple scattering of electrons (W.R. Leo, Techniques...)

. .

Backscattering:

HADES

High Acceptance Di-Electron Spectrometer

Physics Motivations

Organic Scintillator (Leo, Techniques...)

Very rapid fluorescence signal (a few ns) \rightarrow timing Production of light requires 100 eV per photon (NaI: 25 eV)

Scintillator – light guide – photomultiplier (Leo, Techniques...)

Measurement of time-of-flight (Grupen, Teilchendetektoren)

Photomultiplier tube (Grupen, Teilchendetektoren)

Quantum efficiency of the photocathode: 10 - 30 %Amplification: up to 10^7

The TOF Detector

Catania (INFN - LNS) Milano (INFN, Univ.) Rez (CAS, NPI) Bratislava (SAS, PI)

- 6 x 64 Scintillators σ_{tof} : 90-140 ps
- In beam start detector Diamond, $d = 120\mu m$, t = 66ps

Pre-Shower/TOF system Θ < 45⁰

Ionisation chamber (*Grupen, Teilchendetektoren*)

Energy resolution: $R = 2.35 \sqrt{\frac{Fw}{E}}$, F < 0.2

Yield of ions in a gas detector (Leo, Techniques...)

Multiwire chamber (Charpak) → position sensitivity

Track Reconstruction in the Drift Chamber

Track Reconstruction:

- 1. Search for Wire Hit
- 2. Targetprojection
- 3. Straight-line-fit

Particle ID with the tracking chambers

Correct time-above-threshold for track topology.

- Simulation (Garfield)
- Use tracking information

Will be exploited for:

- Track matching
- Close pair rejection

Momentum Reconstruction

META

MDC4

$$\beta > \beta_{thr} = \frac{1}{n} = \sqrt{1 - \frac{1}{\gamma_{thr}^2}}$$
$$\cos \vartheta_c = \frac{1}{\beta n} \xrightarrow{\beta \to 1} \frac{1}{n}$$
$$p = m_0 \gamma v = m_0 c \gamma \beta \xrightarrow{\beta \to 1} m_0 c \gamma$$

 $\gamma_{thr} = 18$ for $e^-: p_{thr} = 0.511 MeV/c \cdot 18 = 9 MeV/c$ for pions: $p_{thr} = 135 MeV/c \cdot 18 = 2.43 GeV/c$

Cherenkov-radiators

Material	n-1	β -min	γ-min		
solid Sodium	3.22	0.24	1.029		
Diamond	2.91	0.26	1.034		
Flintglas	0.92	0.52	1.17		
Water	0.33	0.75	1.52		
Aerogel	0.025 - 0.075	0.93 - 0.976	4.5 - 2.7		
Pentane	1.7×10^{-3}	0.9983	17.2		
Air	2.93×10 ⁻⁴	0.9997	41.1		
Helium	3.3×10^{-5}	0.99997	123		

The HADES RICH Detector

The RICH Detector

Photon Detector

Photon Detector :

- CH₄ MWPC
- CsI cathode
- 28.600 pads
- 10 µs readout

Single events in the RICH

Lepton identification: C+C @ 2 AGeV

Online Lepton ID

- Fast readout of all PID detectors (10µs)
- Real time processing with
 - Calibration
 - Pattern recognition
 - Position calculation
- Transfer to Matching Unit
- Decision and second level trigger distribution

Efficiency calibration (OEM)

Photons produced by 600 AMeV 12C beam particles passing two different

OEM Radiator

Detector Response to VUV Photons

Pulse Height Analysis

Coupling to Neighbouring Pads

Charge Distribution of Single Photons

Analysis of Photon Yield

Experimental Data

Simulation Input (HGeant)

- Simulation of single photon response
- Electronic noise

N_0 Calculation

$$N_{0}^{Sim} = const. \int_{\lambda_{1}}^{\lambda_{2}} \prod_{i} \varepsilon_{i}^{Sim}(\lambda) \frac{\delta\lambda}{\lambda^{2}}$$
$$N_{0}^{Sim} = 102$$
$$N_{0}^{Exp} = const. \int_{\lambda_{1}}^{\lambda_{2}} R(\lambda) \cdot \prod_{i} \varepsilon_{i}^{Sim}(\lambda) \frac{\delta\lambda}{\lambda^{2}}$$

	Sector 1 MgF ₂ SiO ₂		Sector 2		Sector 3		Sector 6	
			MgF ₂ SiO ₂		MgF ₂ SiO ₂		MgF ₂ SiO ₂	
N^{Sim}_{0}	102	102	102	102	102	102	102	102
N ^{Exp} ₀	78 / 88	80/ 99	92/ 106	78/ 88	94/ 106	88/ 100	96/ 110	98/ 130

Combinatorial Background

Dilepton Spectroscopy

HADES : Study of in-medium hadron properties via low mass e^+e^- pairs from π , p, A + A collisions

Example:

Data vs. PLUTO cocktail: C+C@2AGeV

Agakishiev et al., Phys. Rev. Lett. 98, 052302 (2007)

- Cocktail A: $\pi^0 + \eta + \omega$
 - = "long-lived" components only
- <u>Cocktail B</u>: Cocktail A + A + p

→ Large excess yield!

Systematic errors:

- 15% efficiency correction
- 10% combinatorial background
- 11% π^0 normalization

21% Total