
7. Nuclear models

7.1   Fermi gas model

7.2   Shell model



• Free electron gas: protons and neutrons moving quasi-freely within the
nuclear volume

• 2 different potentials wells for protons and neutrons.

• Spherical square well potentials with the same radius

Fermi Gas Model

Statistics of the Fermi distribution

Given a volume V the numer of states dn goes like:
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If T=0 the nucleus is in the ground state and
pF (Fermi Momentum) is the maximum possible
momentum of the ground state.
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Spin 1/2 particles

N= number of neutrons

Z= number of protons
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The nucleon moves in the
nucleus with a large momentum

Fermi Energy

Binding Energy: BE/A= 7-8 MeV 
V0=EF+B/A~ 40MeV
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Nucleons are rather weakly bound in
the nucleus



Potential well in the Fermi-gas model 

The neutron potential well is deeper that the proton well because of the
missing Coulomb repulsion. The Fermi Energy is the same, otherwise the p-->n
decay would happen spontaneously. This implies that they are more neutrons
states available and hence N>Z the heavier the nuclei become.
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Calculation of the state density
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which the
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is calculated

a

Considering the approximation that the nuclear potential shold have a sharp
edge in correspondence of the nuclear radius, one can approximate that to
particles trapped in the pot potential



We count how many states we have in a spherical volume of radius between 
 and +
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Hierarchy of energy eigenstates
of the harmonic oscillator potential 

N = 2(n-1) + l

E = h (N + 3/2)



Shell Model Potential

Skin thickness



Spin Orbit Coupling

It changes the  hierarchy of the energy levels:
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The energy levels transform into nlj levels.



Shell model 

Single particle level calculated in the
shell model.

Spin-orbit
coupling

Saxon-Wood Potential
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Single-Particle-Spectrum of the Wood-Saxon Potential
for a heavy nucleus



Energy of first excited nuclear level in gg-nuclei



Energy levels of some nuclei
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Nuclear Magnetic Moments in Shell Model
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Wigner-Eckart Theorem: The expectation value of any vector operator of a system
is equal to the projection onto ist angular momentum
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In the case of a single nucleon in addition to the close shell the angular
momentum of the closed shell nuclei couples to 0. The nuclear magnetic
Momentum of is equal to the nuclear magnetic mom. of the valence nucleon.
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Magnetic moments:
Shell model calculations and experimental values 


