7. Nuclear models

7.1 Fermi gas model
7.2 Shell model

Fermi Gas Model

- Free electron gas: protons and neutrons moving quasi-freely within the nuclear volume
- 2 different potentials wells for protons and neutrons.
- Spherical square well potentials with the same radius

Statistics of the Fermi distribution

Given a volume V the numer of states $d n$ goes like:

$$
\begin{aligned}
& d n=\frac{4 \pi p^{2} d p V}{(2 \pi \hbar)^{3}} \quad \begin{array}{l}
\text { If } \mathrm{T}=0 \text { the nucleus is in the ground state and } \\
\mathrm{p}_{\mathrm{F}} \text { (Fermi Momentum) is the maximum possible } \\
\text { momentum of the ground state. }
\end{array} \\
& n=\int_{0}^{p_{F}} \frac{4 \pi p^{2} d p V}{(2 \pi \hbar)^{3}}=\frac{V p_{F}^{3}}{6 \pi^{2} \hbar^{3}} \quad \begin{array}{l}
\mathrm{N}=\text { number of neutrons }
\end{array} \\
& N=2 n=\frac{V p_{F, n}^{3}}{3 \pi^{2} \hbar^{3}} \quad Z=\frac{V p_{F, p}^{3}}{3 \pi^{2} \hbar^{3}} \quad \mathrm{Z}=\text { number of protons }
\end{aligned}
$$

Spin 1/2 particles

$$
\begin{aligned}
& V=\frac{4}{3} \pi R^{3}=\frac{4}{3} \pi R_{0}^{3} A \quad R_{0}=1.21 \mathrm{fm} \\
& Z=N=A / 2 \quad \frac{A}{2}=\frac{4}{3} \frac{\pi R_{o}^{3} A p_{F}^{3}}{3 \pi^{2} \hbar^{3}} \Rightarrow p_{F}=p_{F, n}=p_{F, p}=\frac{\hbar}{R_{0}}\left(\frac{9 \pi}{8}\right)^{\frac{1}{3}} \approx 250 \mathrm{MeV} / \mathrm{c}
\end{aligned}
$$

The nucleon moves in the nucleus with a large momentum
Fermi Energy $E_{F}=\frac{p_{F}^{2}}{2 m_{N}} \approx 33 \mathrm{MeV}$
Binding Energy: $B E / A=7-8 \mathrm{MeV}$ $V_{0}=E_{F}+B / A \sim 40 \mathrm{MeV}$
\rightarrow Nucleons are rather weakly bound in the nucleus

Potential well in the Fermi-gas model

The neutron potential well is deeper that the proton well because of the missing Coulomb repulsion. The Fermi Energy is the same, otherwise the p-->n decay would happen spontaneously. This implies that they are more neutrons states available and hence $N>Z$ the heavier the nuclei become.

$$
\begin{aligned}
& <E_{K i n}>=\frac{\int_{0}^{p_{F}} E_{K i n} p^{2} d p}{\int_{0}^{p_{F}} p^{2} d p}=\frac{3}{5} \frac{p_{F}^{2}}{2 m_{N}} \approx 20 \mathrm{MeV} \\
& E_{K i n}(N, Z)=N<E_{K i n, N}>+Z<E_{K i n, Z}>=\frac{3}{10 m_{N}}\left(N p_{F, N}^{2}+Z p_{F Z}^{2}\right) \\
& p_{F N}=\left(\frac{N \cdot 3 \pi^{2} \hbar^{3}}{V}\right)=\left(\frac{N \cdot 9 \pi^{2} \hbar^{3}}{4 \pi R_{0}^{3} A}\right)^{\frac{1}{3}} \\
& p_{F Z}=\left(\frac{Z \cdot 3 \pi^{2} \hbar^{3}}{V}\right)=\left(\frac{Z \cdot 9 \pi^{2} \hbar^{3}}{4 \pi R_{0}^{3} A}\right)^{\frac{1}{3}} \\
& \left.E_{K i n}=\frac{3}{19 m_{N}} \frac{\hbar^{2}}{R_{0}}\left(\frac{9 \pi^{2} \hbar^{3}}{4 \pi R_{0}^{3}}\right)^{\frac{2}{3}}\left(\frac{Z^{\frac{5}{3}}+N^{\frac{5}{3}}}{A^{\frac{2}{3}}}\right) \quad E_{\text {Kin }}\right) \quad \beta \text { Decay } \\
& E_{K i n}=\frac{\hbar^{2}}{R_{0}^{2}} \frac{3}{10 m_{N}}\left(\frac{9 \pi}{4}\right)^{\frac{2}{3}} \frac{N^{\frac{5}{3}}+Z^{\frac{5}{3}}}{A^{\frac{2}{3}}}=\frac{3}{10 m_{N}} \frac{\hbar^{2}}{R_{0}^{2}}\left(\frac{9 \pi}{4}\right)^{\frac{2}{3}}\left(A+\frac{5}{9} \frac{(N-Z)^{2}}{A}+\ldots\right)
\end{aligned}
$$

Calculation of the state density

Considering the approximation that the nuclear potential shold have a sharp edge in correspondence of the nuclear radius, one can approximate that to particles trapped in the pot potential

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \Delta \psi=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}\right)=E \psi \\
& -\frac{\hbar^{2}}{2 m} \frac{\partial^{2} X(x)}{\partial x^{2}}=E_{X} X(x) \ldots . . \quad \psi(r)=X(x) Y(y) Z(z) \\
& Y Z E_{X} X+X Z E_{y} Y+X Y E_{Z} Z=E X Y Z \\
& \frac{\partial^{2} X(x)}{\partial x^{2}}=-k X \quad k=\frac{1}{\hbar} \sqrt{2 m E} \\
& X_{\lambda}=A_{\lambda} e^{i k_{\lambda} x}+B_{\lambda} e^{-i k_{k} x} \quad \text { Boundary Conditions : at } x=y=z=\frac{a}{2}: X=Y=Z=0 \\
& X_{\lambda}^{+}=\frac{2}{\sqrt{2 a}} \cos k_{\lambda}^{+} x \quad X_{\lambda}^{-}=\frac{2 i}{\sqrt{2 a}} \sin k_{\lambda}^{-} x \quad k_{\lambda}^{+}=\frac{\pi \lambda^{+}}{a}, \lambda=1,3,5 . . \quad k_{\lambda}^{-}=\frac{\pi \lambda^{-}}{a}, \lambda=0,2,4 \ldots \\
& E X=\frac{\hbar^{2}}{2 m} k_{\lambda}^{2}=\frac{1}{2 m}\left(\frac{\pi \lambda \hbar}{a}\right)^{2} \\
& E=\frac{1}{2 m}\left(\frac{\pi \hbar}{a}\right)^{2}\left(\lambda_{x}^{2}+\lambda_{y}^{2}+\lambda_{z}^{2}\right) \quad p^{2}=2 m E=\left(\frac{\pi \hbar}{a}\right)^{2}\left(\lambda_{x}^{2}+\lambda_{y}^{2}+\lambda_{z}^{2}\right) \\
& \Omega \approx \lambda^{3} \approx a^{3} p^{3}
\end{aligned}
$$

We count how many states we have in a spherical volume of radius between ρ and $\rho+\delta \rho$

$$
\begin{aligned}
& \rho^{2}=\lambda_{x}^{2}+\lambda_{y}^{2}+\lambda_{z}^{2} \quad d \Omega=4 \pi \rho^{2} \delta \rho \\
& d n=\frac{1}{8} d \Omega=\frac{\pi}{2} \rho^{2} \delta \rho \quad \rho=\frac{a}{\pi \hbar} p \quad d \rho=\frac{a}{\pi \hbar} d p \quad \text { Momentum volume } \\
& d n=\frac{\pi}{2} \frac{a^{2}}{\pi^{2} \hbar^{2}} p^{2} \frac{a}{\pi \hbar} d p=\frac{a^{3}}{2 \pi^{2} \hbar^{3}} p^{2} d p \xrightarrow{4 \pi p^{2} d p \nu} \frac{\text { Space volume }}{(2 \pi \hbar)^{3}} \longrightarrow \text { Phase-space occupie } \\
& p^{2}=2 m E \quad p^{2} d p=\sqrt{2 m^{3} E d E} \quad
\end{aligned}
$$

$$
d n=m^{\frac{3}{2}}\left(\sqrt{2} \pi^{2} \hbar^{3}\right)^{-1} v d E \sqrt{E}=C_{1} \sqrt{E} d E
$$

Number of spin $1 / 2$ particles which sit in the well:

$$
n=\int_{0}^{E_{F}} 2 \frac{d n}{d E} d E=2 C_{1} v \int_{0}^{E_{r}} \sqrt{E} d E=\left(\sqrt{8} m^{\frac{3}{2}}\right)\left(3 \pi^{2} \hbar^{3}\right)^{-1} v E_{F}^{\frac{2}{3}}
$$

$$
\begin{aligned}
& E_{F}=\left(\frac{1}{2 m}\right) 3^{\frac{2}{3}} \pi^{\frac{4}{3}} \hbar^{2}\left(\frac{n}{v}\right)^{2 / 3} \approx 30 \mathrm{MeV} \\
& \text { in } C u \text { atoms }: \frac{n}{v}=6 \cdot 10^{23} \cdot \frac{9}{64}=8 \cdot 10^{22} \mathrm{~cm}^{-3} \Rightarrow E_{F} \approx 7 \mathrm{eV}
\end{aligned}
$$

Hierarchy of energy eigenstates of the harmonic oscillator potential

N	0	1	2	2	3	3	4	4	4	\cdots
$n \ell$	1 s	1 p	1 d	2 s	1 f	2 p	1 g	2 d	3 s	\cdots
Degeneracy	2	6	10	2	14	6	18	10	2	\cdots
States with $E \leq E_{n \ell}$	2	8	18	20	34	40	58	68	70	\cdots

$$
\begin{aligned}
& N=2(n-1)+1 \\
& E=h v(N+3 / 2)
\end{aligned}
$$

Shell Model Potential

Spin Orbit Coupling

It changes the hierarchy of the energy levels:

$$
\begin{aligned}
& V(r)=V_{\text {central }}(r)+V_{l s}(r) \frac{\langle\vec{l} \vec{s}\rangle}{\hbar^{2}} \\
& \frac{\langle\vec{l} \vec{s}\rangle}{\hbar^{2}}=\frac{1}{2}(j(j+1)-l(l+1)-s(s+1))=\left\{\begin{array}{ccl}
l / 2 & j=l+1 / 2 & \text { Moving below } \\
-(l+1) / 2 & j=l-1 / 2 & \text { Moving above }
\end{array}\right. \\
& \left.\Delta E_{l s}=\frac{2(l+1)}{2}<V_{l s}(r)\right\rangle
\end{aligned}
$$

The energy levels transform into $n_{1 j}$ levels.

Saxon-Wood Potential

Shell model

Single particle level calculated in the shell model.

Single-Particle-Spectrum of the Wood-Saxon Potential for a heavy nucleus

Energy of first excited nuclear level in gg-nuclei

Energy levels of some nuclei

Nuclear Magnetic Moments in Shell Model

$$
\begin{aligned}
& \mu_{\text {nucl }}=\mu_{N} \sum_{i=1}^{A}\left(g_{l} \vec{l}_{i}+g_{s} \vec{s}_{i}\right) / \hbar \\
& g_{l}=\left\{\begin{array}{ll}
1 & \text { for } p \\
0 & \text { for } n
\end{array} \quad g_{s}= \begin{cases}5.58 & \text { for } p \\
-3.83 & \text { for } n\end{cases} \right. \\
& <\mu_{\text {nucl }}>=\mu_{N} \sum_{i=1}^{A}<\psi_{\text {nucl }}\left|g_{l} \vec{l}_{i}+g_{s} \vec{s}_{i}\right| \psi_{\text {nucl }}>/ \hbar
\end{aligned}
$$

Wigner-Eckart Theorem: The expectation value of any vector operator of a system is equal to the projection onto ist angular momentum

$$
<\mu_{\text {nucl }}>=g_{\text {nucl }} \mu_{N} \frac{\langle\vec{J}\rangle}{\hbar} \quad g_{\text {nucl }}=\sum_{i=1}^{A} \frac{\left\langle J M_{J}\right| g_{l} \vec{l}_{i}+g_{s} \vec{s}_{i}\left|J M_{J}\right\rangle}{\left\langle J M_{J}\right| J^{2}\left|J M_{J}\right\rangle}
$$

In the case of a single nucleon in addition to the close shell the angular momentum of the closed shell nuclei couples to 0 . The nuclear magnetic Momentum of is equal to the nuclear magnetic mom. of the valence nucleon.

$$
\begin{aligned}
& g_{\text {nucl }}=\frac{g_{l}(j(j+1)+l(l+1)-s(s+1))+g s(j(j+1)+s(s+1)-l(l+1))}{2 j(j+1)} \\
& \frac{\mu_{\text {nucl }}}{\mu_{N}}=g_{\text {nucl }} J=\left(g_{l} \pm \frac{g_{s}-g_{l}}{2 l+1}\right) \quad J=l \pm 1 / 2
\end{aligned}
$$

Magnetic moments:

Shell model calculations and experimental values

Nucleus	State	J^{P}	μ / μ_{N}	
			Model	Expt.
${ }^{15} \mathrm{~N}$	$\mathrm{p}-1 \mathrm{p}_{1 / 2}^{-1}$	$1 / 2^{-}$	-0.264	-0.283
${ }^{15} \mathrm{O}$	$\mathrm{n}-1 \mathrm{p}_{1 / 2}^{-1}$	$1 / 2^{-}$	+0.638	+0.719
${ }^{17} \mathrm{O}$	$\mathrm{n}-1 \mathrm{~d}_{5 / 2}$	$5 / 2^{+}$	-1.913	-1.894
${ }^{17} \mathrm{~F}$	$\mathrm{p}-1 \mathrm{~d}_{5 / 2}$	$5 / 2^{+}$	+4.722	+4.793

